Do you want to publish a course? Click here

Predication of Inflection Point and Outbreak Size of COVID-19 in New Epicentres

101   0   0.0 ( 0 )
 Added by You-Gan Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The coronavirus disease 2019 (COVID-19) had caused more that 8 million infections as of middle June 2020. Recently, Brazil has become a new epicentre of COVID-19, while India and African region are potential epicentres. This study aims to predict the inflection point and outbreak size of these new/potential epicentres at the early phase of the epidemics by borrowing information from more `mature curves from other countries. We modeled the cumulative cases to the well-known sigmoid growth curves to describe the epidemic trends under the mixed-effect models and using the four-parameter logistic model after power transformations. African region is predicted to have the largest total outbreak size of 3.9 million cases (2.2 to 6 million), and the inflection will come around September 13, 2020. Brazil and India are predicted to have a similar final outbreak size of around 2.5 million cases (1.1 to 4.3 million), with the inflection points arriving June 23 and July 26, respectively. We conclude in Brazil, India, and African the epidemics of COVI19 have not yet passed the inflection points; these regions potentially can take over USA in terms of outbreak size



rate research

Read More

A mathematical model for the COVID-19 pandemic spread, which integrates age-structured Susceptible-Exposed-Infected-Recovered-Deceased dynamics with real mobile phone data accounting for the population mobility, is presented. The dynamical model adjustment is performed via Approximate Bayesian Computation. Optimal lockdown and exit strategies are determined based on nonlinear model predictive control, constrained to public-health and socio-economic factors. Through an extensive computational validation of the methodology, it is shown that it is possible to compute robust exit strategies with realistic reduced mobility values to inform public policy making, and we exemplify the applicability of the methodology using datasets from England and France. Code implementing the described experiments is available at https://github.com/OptimalLockdown.
We analyze risk factors correlated with the initial transmission growth rate of the recent COVID-19 pandemic in different countries. The number of cases follows in its early stages an almost exponential expansion; we chose as a starting point in each country the first day $d_i$ with 30 cases and we fitted for 12 days, capturing thus the early exponential growth. We looked then for linear correlations of the exponents $alpha$ with other variables, for a sample of 126 countries. We find a positive correlation, {it i.e. faster spread of COVID-19}, with high confidence level with the following variables, with respective $p$-value: low Temperature ($4cdot10^{-7}$), high ratio of old vs.~working-age people ($3cdot10^{-6}$), life expectancy ($8cdot10^{-6}$), number of international tourists ($1cdot10^{-5}$), earlier epidemic starting date $d_i$ ($2cdot10^{-5}$), high level of physical contact in greeting habits ($6 cdot 10^{-5}$), lung cancer prevalence ($6 cdot 10^{-5}$), obesity in males ($1 cdot 10^{-4}$), share of population in urban areas ($2cdot10^{-4}$), cancer prevalence ($3 cdot 10^{-4}$), alcohol consumption ($0.0019$), daily smoking prevalence ($0.0036$), UV index ($0.004$, 73 countries). We also find a correlation with low Vitamin D levels ($0.002-0.006$, smaller sample, $sim 50$ countries, to be confirmed on a larger sample). There is highly significant correlation also with blood types: positive correlation with types RH- ($3cdot10^{-5}$) and A+ ($3cdot10^{-3}$), negative correlation with B+ ($2cdot10^{-4}$). Several of the above variables are intercorrelated and likely to have common interpretations. We performed a Principal Component Analysis, in order to find their significant independent linear combinations. We also analyzed a possible bias: countries with low GDP-per capita might have less testing and we discuss correlation with the above variables.
This study presents a new risk-averse multi-stage stochastic epidemics-ventilator-logistics compartmental model to address the resource allocation challenges of mitigating COVID-19. This epidemiological logistics model involves the uncertainty of untested asymptomatic infections and incorporates short-term human migration. Disease transmission is also forecasted through a new formulation of transmission rates that evolve over space and time with respect to various non-pharmaceutical interventions, such as wearing masks, social distancing, and lockdown. The proposed multi-stage stochastic model overviews different scenarios on the number of asymptomatic individuals while optimizing the distribution of resources, such as ventilators, to minimize the total expected number of newly infected and deceased people. The Conditional Value at Risk (CVaR) is also incorporated into the multi-stage mean-risk model to allow for a trade-off between the weighted expected loss due to the outbreak and the expected risks associated with experiencing disastrous pandemic scenarios. We apply our multi-stage mean-risk epidemics-ventilator-logistics model to the case of controlling the COVID-19 in highly-impacted counties of New York and New Jersey. We calibrate, validate, and test our model using actual infection, population, and migration data. The results indicate that short-term migration influences the transmission of the disease significantly. The optimal number of ventilators allocated to each region depends on various factors, including the number of initial infections, disease transmission rates, initial ICU capacity, the population of a geographical location, and the availability of ventilator supply. Our data-driven modeling framework can be adapted to study the disease transmission dynamics and logistics of other similar epidemics and pandemics.
Since two people came down a county of north Seattle with positive COVID-19 (coronavirus-19) in 2019, the current total cases in the United States (U.S.) are over 12 million. Predicting the pandemic trend under effective variables is crucial to help find a way to control the epidemic. Based on available literature, we propose a validated Vector Autoregression (VAR) time series model to predict the positive COVID-19 cases. A real data prediction for U.S. is provided based on the U.S. coronavirus data. The key message from our study is that the situation of the pandemic will getting worse if there is no effective control.
This research was done during the DOMath program at Duke University from May 18 to July 10, 2020. At the time, Duke and other universities across the country were wrestling with the question of how to safely welcome students back to campus in the Fall. Because of this, our project focused on using mathematical models to evaluate strategies to suppress the spread of the virus on campus, specifically in dorms and in classrooms. For dorms, we show that giving students single rooms rather than double rooms can substantially reduce virus spread. For classrooms, we show that moving classes with size above some cutoff online can make the basic reproduction number $R_0<1$, preventing a wide spread epidemic. The cutoff will depend on the contagiousness of the disease in classrooms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا