Do you want to publish a course? Click here

Comparing to Learn: Surpassing ImageNet Pretraining on Radiographs By Comparing Image Representations

348   0   0.0 ( 0 )
 Added by Hong-Yu Zhou
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In deep learning era, pretrained models play an important role in medical image analysis, in which ImageNet pretraining has been widely adopted as the best way. However, it is undeniable that there exists an obvious domain gap between natural images and medical images. To bridge this gap, we propose a new pretraining method which learns from 700k radiographs given no manual annotations. We call our method as Comparing to Learn (C2L) because it learns robust features by comparing different image representations. To verify the effectiveness of C2L, we conduct comprehensive ablation studies and evaluate it on different tasks and datasets. The experimental results on radiographs show that C2L can outperform ImageNet pretraining and previous state-of-the-art approaches significantly. Code and models are available.



rate research

Read More

Much of the progress in contemporary NLP has come from learning representations, such as masked language model (MLM) contextual embeddings, that turn challenging problems into simple classification tasks. But how do we quantify and explain this effect? We adapt general tools from computational learning theory to fit the specific characteristics of text datasets and present a method to evaluate the compatibility between representations and tasks. Even though many tasks can be easily solved with simple bag-of-words (BOW) representations, BOW does poorly on hard natural language inference tasks. For one such task we find that BOW cannot distinguish between real and randomized labelings, while pre-trained MLM representations show 72x greater distinction between real and random labelings than BOW. This method provides a calibrated, quantitative measure of the difficulty of a classification-based NLP task, enabling comparisons between representations without requiring empirical evaluations that may be sensitive to initializations and hyperparameters. The method provides a fresh perspective on the patterns in a dataset and the alignment of those patterns with specific labels.
We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been the focus of intense research for almost a decade, raising the danger of overfitting to excessively re-used test sets. By closely following the original dataset creation processes, we test to what extent current classification models generalize to new data. We evaluate a broad range of models and find accuracy drops of 3% - 15% on CIFAR-10 and 11% - 14% on ImageNet. However, accuracy gains on the original test sets translate to larger gains on the new test sets. Our results suggest that the accuracy drops are not caused by adaptivity, but by the models inability to generalize to slightly harder images than those found in the original test sets.
This paper investigates two typical image-type representations for event camera-based tracking: time surface (TS) and event map (EM). Based on the original TS-based tracker, we make use of these two representations complementary strengths to develop an enhanced version. The proposed tracker consists of a general strategy to evaluate the optimization problems degeneracy online and then switch proper representations. Both TS and EM are motion- and scene-dependent, and thus it is important to figure out their limitations in tracking. We develop six tracker variations and conduct a thorough comparison of them on sequences covering various scenarios and motion complexities. We release our implementations and detailed results to benefit the research community on event cameras: https: //github.com/gogojjh/ESVO_extension.
We discuss methodological issues related to the evaluation of unsupervised binary code construction methods for nearest neighbor search. These issues have been widely ignored in literature. These coding methods attempt to preserve either Euclidean distance or angular (cosine) distance in the binary embedding space. We explain why when comparing a method whose goal is preserving cosine similarity to one designed for preserving Euclidean distance, the original features should be normalized by mapping them to the unit hypersphere before learning the binary mapping functions. To compare a method whose goal is to preserves Euclidean distance to one that preserves cosine similarity, the original feature data must be mapped to a higher dimension by including a bias term in binary mapping functions. These conditions ensure the fair comparison between different binary code methods for the task of nearest neighbor search. Our experiments show under these conditions the very simple methods (e.g. LSH and ITQ) often outperform recent state-of-the-art methods (e.g. MDSH and OK-means).
An implicit but pervasive hypothesis of modern computer vision research is that convolutional neural network (CNN) architectures that perform better on ImageNet will also perform better on other vision datasets. We challenge this hypothesis through an extensive empirical study for which we train 500 sampled CNN architectures on ImageNet as well as 8 other image classification datasets from a wide array of application domains. The relationship between architecture and performance varies wildly, depending on the datasets. For some of them, the performance correlation with ImageNet is even negative. Clearly, it is not enough to optimize architectures solely for ImageNet when aiming for progress that is relevant for all applications. Therefore, we identify two dataset-specific performance indicators: the cumulative width across layers as well as the total depth of the network. Lastly, we show that the range of dataset variability covered by ImageNet can be significantly extended by adding ImageNet subsets restricted to few classes.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا