Gravitational Waves from Neutrino Asymmetries in Core-Collapse Supernovae


Abstract in English

We present a broadband spectrum of gravitational waves from core-collapse supernovae (CCSNe) sourced by neutrino emission asymmetries for a series of full 3D simulations. The associated gravitational wave strain probes the long-term secular evolution of CCSNe and small-scale turbulent activity and provides insight into the geometry of the explosion. For non-exploding models, both the neutrino luminosity and the neutrino gravitational waveform will encode information about the spiral SASI. The neutrino memory will be detectable for a wide range of progenitor masses for a galactic event. Our results can be used to guide near-future decihertz and long-baseline gravitational-wave detection programs, including aLIGO, the Einstein Telescope, and DECIGO.

Download