No Arabic abstract
We report on Chandra gratings spectra of the stellar-mass black hole GRS 1915+105 obtained during a novel, highly obscured state. As the source entered this state, a dense, massive accretion disk wind was detected through strong absorption lines. Photionization modeling indicates that it must originate close to the central engine, orders of magnitude from the outer accretion disk. Strong, nearly sinusoidal flux variability in this phase yielded a key insight: the wind is blue-shifted when its column density is relatively low, but red-shifted as it approaches the Compton-thick threshold. At no point does the wind appear to achieve the local escape velocity; in this sense, it is a failed wind. Later observations suggest that the disk ultimately fails to keep even the central engine clear of gas, leading to heavily obscured and Compton-thick states characterized by very strong Fe K emission lines. Indeed, these later spectra are successfully described using models developed for obscured AGN. We discuss our results in terms the remarkable similarity of GRS 1915+105 deep in its obscured state to Seyfert-2 and Compton-thick AGN, and explore how our understanding of accretion and obscuration in massive black holes is impacted by our observations.
We report on a 120 ks Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in June, 2015. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blue-shift of v = 0.03c. Broadened re-emission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r ~ 10^(2-4) GM/c^2. Wind density values of n ~ 10^(13-16) cm^-3 are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to B ~ 10^(3-4) Gauss if the wind is driven via magnetohydrodynamic (MHD) pressure from within the disk, and B ~ 10^(4-5) Gauss if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits predicted by the canonical alpha-disk model (Shakura & Sunyaev 1973). We discuss these results in terms of fundamental disk physics and black hole accretion modes.
We estimate the black hole spin parameter in GRS 1915+105 using the continuum-fitting method with revised mass and inclination constraints based on the very long baseline interferometric parallax measurement of the distance to this source. We fit Rossi X-ray Timing Explorer observations selected to be accretion disk-dominated spectral states as described in McClinotck et al. (2006) and Middleton et al. (2006), which previously gave discrepant spin estimates with this method. We find that, using the new system parameters, the spin in both datasets increased, providing a best-fit spin of $a_*=0.86$ for the Middleton et al. data and a poor fit for the McClintock et al. dataset, which becomes pegged at the BHSPEC model limit of $a_*=0.99$. We explore the impact of the uncertainties in the system parameters, showing that the best-fit spin ranges from $a_*= 0.4$ to 0.99 for the Middleton et al. dataset and allows reasonable fits to the McClintock et al. dataset with near maximal spin for system distances greater than $sim 10$ kpc. We discuss the uncertainties and implications of these estimates.
Disk and wind signatures are seen in the soft state of Galactic black holes, while the jet is seen in the hard state. Here we study the disk-wind connection in the $rho$ class of variability in GRS 1915+105 using a joint NuSTAR-Chandra observation. The source shows 50 sec limit cycle oscillations. By including new information provided by the reflection spectrum, and using phase-resolved spectroscopy, we find that the change in the inner disk inferred from the blackbody emission is not matched by reflection measurements. The latter is almost constant, independent of the continuum model. The two radii are comparable only if the disk temperature color correction factor changes, an effect that could be due to the changing opacity of the disk caused by changes in metal abundances. The disk inclination is similar to that inferred from the jet axis, and oscillates by ~10 deg. The simultaneous Chandra data show the presence of two wind components with velocities between 500-5000 km/s, and possibly two more with velocities reaching 20,000 km/s (~0.06 c). The column densities are ~5e22 cm$^{-2}$. An upper limit to the wind response time of 2 sec is measured, implying a launch radius of <6e10 cm. The changes in wind velocity and absorbed flux require the geometry of the wind to change during the oscillations, constraining the wind to be launched from a distance of 290 - 1300 rg from the black hole. Both datasets support fundamental model predictions in which a bulge originates in the inner disk and moves outward as the instability progresses.
We report on the long-term monitoring campaign of the black hole candidate IGR J17091-3624 performed with INTEGRAL and Swift during the peculiar outburst started on January 2011. We have studied the two month spectral evolution of the source in detail. Unlike the previous outbursts, the initial transition from the hard to the soft state in 2011 was not followed by the standard spectral evolution expected for a transient black hole binary. IGR J17091-3624 showed pseudo periodic flare-like events in the light curve, closely resembling those observed from GRS 1915+105. We find evidence that these phenomena are due to the same physical instability process ascribed to GRS 1915+105. Finally we speculate that the faintness of IGR J17091-3624 could be not only due to the high distance of the source but to the high inclination angle of the system as well.
The Galactic black hole transient GRS1915+105 is famous for its markedly variable X-ray and radio behaviour, and for being the archetypal galactic source of relativistic jets. It entered an X-ray outburst in 1992 and has been active ever since. Since 2018 GRS1915+105 has declined into an extended low-flux X-ray plateau, occasionally interrupted by multi-wavelength flares. Here we report the radio and X-ray properties of GRS1915+105 collected in this new phase, and compare the recent data to historic observations. We find that while the X-ray emission remained unprecedentedly low for most of the time following the decline in 2018, the radio emission shows a clear mode change half way through the extended X-ray plateau in 2019 June: from low flux (~3mJy) and limited variability, to marked flaring with fluxes two orders of magnitude larger. GRS1915+105 appears to have entered a low-luminosity canonical hard state, and then transitioned to an unusual accretion phase, characterised by heavy X-ray absorption/obscuration. Hence, we argue that a local absorber hides from the observer the accretion processes feeding the variable jet responsible for the radio flaring. The radio-X-ray correlation suggests that the current low X-ray flux state may be a signature of a super-Eddington state akin to the X-ray binaries SS433 or V404 Cyg.