Do you want to publish a course? Click here

Spectrum-Guided Adversarial Disparity Learning

144   0   0.0 ( 0 )
 Added by Zhe Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

It has been a significant challenge to portray intraclass disparity precisely in the area of activity recognition, as it requires a robust representation of the correlation between subject-specific variation for each activity class. In this work, we propose a novel end-to-end knowledge directed adversarial learning framework, which portrays the class-conditioned intraclass disparity using two competitive encoding distributions and learns the purified latent codes by denoising learned disparity. Furthermore, the domain knowledge is incorporated in an unsupervised manner to guide the optimization and further boosts the performance. The experiments on four HAR benchmark datasets demonstrate the robustness and generalization of our proposed methods over a set of state-of-the-art. We further prove the effectiveness of automatic domain knowledge incorporation in performance enhancement.



rate research

Read More

120 - Tao Bai , Jinnan Chen , Jun Zhao 2020
Deep learning models are shown to be vulnerable to adversarial examples. Though adversarial training can enhance model robustness, typical approaches are computationally expensive. Recent works proposed to transfer the robustness to adversarial attacks across different tasks or models with soft labels.Compared to soft labels, feature contains rich semantic information and holds the potential to be applied to different downstream tasks. In this paper, we propose a novel approach called Guided Adversarial Contrastive Distillation (GACD), to effectively transfer adversarial robustness from teacher to student with features. We first formulate this objective as contrastive learning and connect it with mutual information. With a well-trained teacher model as an anchor, students are expected to extract features similar to the teacher. Then considering the potential errors made by teachers, we propose sample reweighted estimation to eliminate the negative effects from teachers. With GACD, the student not only learns to extract robust features, but also captures structural knowledge from the teacher. By extensive experiments evaluating over popular datasets such as CIFAR-10, CIFAR-100 and STL-10, we demonstrate that our approach can effectively transfer robustness across different models and even different tasks, and achieve comparable or better results than existing methods. Besides, we provide a detailed analysis of various methods, showing that students produced by our approach capture more structural knowledge from teachers and learn more robust features under adversarial attacks.
Ubiquitous systems with End-Edge-Cloud architecture are increasingly being used in healthcare applications. Federated Learning (FL) is highly useful for such applications, due to silo effect and privacy preserving. Existing FL approaches generally do not account for disparities in the quality of local data labels. However, the clients in ubiquitous systems tend to suffer from label noise due to varying skill-levels, biases or malicious tampering of the annotators. In this paper, we propose Federated Opportunistic Computing for Ubiquitous Systems (FOCUS) to address this challenge. It maintains a small set of benchmark samples on the FL server and quantifies the credibility of the client local data without directly observing them by computing the mutual cross-entropy between performance of the FL model on the local datasets and that of the client local FL model on the benchmark dataset. Then, a credit weighted orchestration is performed to adjust the weight assigned to clients in the FL model based on their credibility values. FOCUS has been experimentally evaluated on both synthetic data and real-world data. The results show that it effectively identifies clients with noisy labels and reduces their impact on the model performance, thereby significantly outperforming existing FL approaches.
Recently proposed adversarial training methods show the robustness to both adversarial and original examples and achieve state-of-the-art results in supervised and semi-supervised learning. All the existing adversarial training methods consider only how the worst perturbed examples (i.e., adversarial examples) could affect the model output. Despite their success, we argue that such setting may be in lack of generalization, since the output space (or label space) is apparently less informative.In this paper, we propose a novel method, called Manifold Adversarial Training (MAT). MAT manages to build an adversarial framework based on how the worst perturbation could affect the distributional manifold rather than the output space. Particularly, a latent data space with the Gaussian Mixture Model (GMM) will be first derived.On one hand, MAT tries to perturb the input samples in the way that would rough the distributional manifold the worst. On the other hand, the deep learning model is trained trying to promote in the latent space the manifold smoothness, measured by the variation of Gaussian mixtures (given the local perturbation around the data point). Importantly, since the latent space is more informative than the output space, the proposed MAT can learn better a robust and compact data representation, leading to further performance improvement. The proposed MAT is important in that it can be considered as a superset of one recently-proposed discriminative feature learning approach called center loss. We conducted a series of experiments in both supervised and semi-supervised learning on three benchmark data sets, showing that the proposed MAT can achieve remarkable performance, much better than those of the state-of-the-art adversarial approaches. We also present a series of visualization which could generate further understanding or explanation on adversarial examples.
Meta-learning enables a model to learn from very limited data to undertake a new task. In this paper, we study the general meta-learning with adversarial samples. We present a meta-learning algorithm, ADML (ADversarial Meta-Learner), which leverages clean and adversarial samples to optimize the initialization of a learning model in an adversarial manner. ADML leads to the following desirable properties: 1) it turns out to be very effective even in the cases with only clean samples; 2) it is robust to adversarial samples, i.e., unlike other meta-learning algorithms, it only leads to a minor performance degradation when there are adversarial samples; 3) it sheds light on tackling the cases with limited and even contaminated samples. It has been shown by extensive experimental results that ADML consistently outperforms three representative meta-learning algorithms in the cases involving adversarial samples, on two widely-used image datasets, MiniImageNet and CIFAR100, in terms of both accuracy and robustness.
In this paper, we reformulate the forest representation learning approach as an additive model which boosts the augmented feature instead of the prediction. We substantially improve the upper bound of generalization gap from $mathcal{O}(sqrtfrac{ln m}{m})$ to $mathcal{O}(frac{ln m}{m})$, while $lambda$ - the margin ratio between the margin standard deviation and the margin mean is small enough. This tighter upper bound inspires us to optimize the margin distribution ratio $lambda$. Therefore, we design the margin distribution reweighting approach (mdDF) to achieve small ratio $lambda$ by boosting the augmented feature. Experiments and visualizations confirm the effectiveness of the approach in terms of performance and representation learning ability. This study offers a novel understanding of the cascaded deep forest from the margin-theory perspective and further uses the mdDF approach to guide the layer-by-layer forest representation learning.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا