Thermodynamic evidence for field-angle dependent Majorana gap in a Kitaev spin liquid


Abstract in English

The exactly-solvable Kitaev model of two-dimensional honeycome magnet leads to a quantum spin liquid (QSL) characterized by Majorana fermions, relevant for fault-tolerant topological quantum computations.In the high-field paramagnetic state of $alpha$-RuCl$_3$, half-integer quantization of thermal Hall conductivity has been reported as a signature of Majorana fermions, but the bulk nature of this state remains elusive.Here, from high-resolution heat capacity measurements under in-plane field rotation, we find strongly angle-dependent low-energy excitations in the bulk of $alpha$-RuCl$_3$. The excitation gap has a sextuple node structure, and the gap amplitude increases with field, exactly as expected for itinerant Majorana fermions in the Kitaev model.Our thermodynamic results are fully linked with the transport quantization properties, providing the first demonstration of the bulk-edge correspondence in a Kitaev QSL.

Download