Coexisting Fermi Liquid and Strange Metal Phenomena in Sr$_2$RuO$_4$


Abstract in English

The strange metal is an enigmatic phase whose properties are irreconcilable with the established Fermi liquid theory of conductors. A fundamental question is whether a strange metal and a Fermi liquid are distinct phases of matter, or whether a material can be intermediate between or in a superposition of the two. We studied the collective density response of the correlated metal Sr$_2$RuO$_4$ by momentum-resolved electron energy-loss spectroscopy (M-EELS). We discovered that a broad continuum of non-propagating charge fluctuations (a characteristic of strange metals) and also a dispersing Fermi liquid-like collective mode at low energies and long wavelengths coexist in the same material at the same temperature. These features exhibit a spectral weight redistribution and velocity renormalization when we cool the material through the quasiparticle coherence temperature. Our results show not only that strange metal and Fermi liquid phenomena can coexist but also that Sr$_2$RuO$_4$ serves as an ideal test case for studying the interaction between the two.

Download