Do you want to publish a course? Click here

How Do Open Source Software Contributors Perceive and Address Usability? Valued Factors, Practices, and Challenges

128   0   0.0 ( 0 )
 Added by Jinghui Cheng
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Usability is an increasing concern in open source software (OSS). Given the recent changes in the OSS landscape, it is imperative to examine the OSS contributors current valued factors, practices, and challenges concerning usability. We accumulated this knowledge through a survey with a wide range of contributors to OSS applications. Through analyzing 84 survey responses, we found that many participants recognized the importance of usability. While most relied on issue tracking systems to collect user feedback, a few participants also adopted typical user-centered design methods. However, most participants demonstrated a system-centric rather than a user-centric view. Understanding the diverse needs and consolidating various feedback of end-users posed unique challenges for the OSS contributors when addressing usability in the most recent development context. Our work provided important insights for OSS practitioners and tool designers in exploring ways for promoting a user-centric mindset and improving usability practice in the current OSS communities.



rate research

Read More

The development of scientific software is, more than ever, critical to the practice of science, and this is accompanied by a trend towards more open and collaborative efforts. Unfortunately, there has been little investigation into who is driving the evolution of such scientific software or how the collaboration happens. In this paper, we address this problem. We present an extensive analysis of seven open-source scientific software projects in order to develop an empirically-informed model of the development process. This analysis was complemented by a survey of 72 scientific software developers. In the majority of the projects, we found senior research staff (e.g. professors) to be responsible for half or more of commits (an average commit share of 72%) and heavily involved in architectural concerns (seniors were more likely to interact with files related to the build system, project meta-data, and developer documentation). Juniors (e.g.graduate students) also contribute substantially -- in one studied project, juniors made almost 100% of its commits. Still, graduate students had the longest contribution periods among juniors (with 1.72 years of commit activity compared to 0.98 years for postdocs and 4 months for undergraduates). Moreover, we also found that third-party contributors are scarce, contributing for just one day for the project. The results from this study aim to help scientists to better understand their own projects, communities, and the contributors behavior, while paving the road for future software engineering research
[Context] Open Source Software (OSS) is nowadays used and integrated in most of the commercial products. However, the selection of OSS projects for integration is not a simple process, mainly due to a of lack of clear selection models and lack of information from the OSS portals. [Objective] We investigated the current factors and measures that practitioners are currently considering when selecting OSS, the source of information and portals that can be used to assess the factors, and the possibility to automatically get this information with APIs. [Method] We elicited the factors and the measures adopted to assess and compare OSS performing a survey among 23 experienced developers who often integrate OSS in the software they develop. Moreover, we investigated the APIs of the portals adopted to assess OSS extracting information for the most starred 100K projects in GitHub. [Result] We identified a set consisting of 8 main factors and 74 sub-factors, together with 170 related metrics that companies can use to select OSS to be integrated in their software projects. Unexpectedly, only a small part of the factors can be evaluated automatically, and out of 170 metrics, only 40 are available, of which only 22 returned information for all the 100K projects. [Conclusion.] OSS selection can be partially automated, by extracting the information needed for the selection from portal APIs. OSS producers can benefit from our results by checking if they are providing all the information commonly required by potential adopters. Developers can benefit from our results, using the list of factors we selected as a checklist during the selection of OSS, or using the APIs we developed to automatically extract the data from OSS projects.
The relevance of Requirements Engineering (RE) research to practitioners is a prerequisite for problem-driven research in the area and key for a long-term dissemination of research results to everyday practice. To better understand how industry practitioners perceive the practical relevance of RE research, we have initiated the RE-Pract project, an international collaboration conducting an empirical study. This project opts for a replication of previous work done in two different domains and relies on survey research. To this end, we have designed a survey to be sent to several hundred industry practitioners at various companies around the world and ask them to rate their perceived practical relevance of the research described in a sample of 418 RE papers published between 2010 and 2015 at the RE, ICSE, FSE, ESEC/FSE, ESEM and REFSQ conferences. In this paper, we summarise our research protocol and present the current status of our study and the planned future steps.
With the increase of research in self-adaptive systems, there is a need to better understand the way research contributions are evaluated. Such insights will support researchers to better compare new findings when developing new knowledge for the community. However, so far there is no clear overview of how evaluations are performed in self-adaptive systems. To address this gap, we conduct a mapping study. The study focuses on experimental evaluations published in the last decade at the prime venue of research in software engineering for self-adaptive systems -- the International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). Results point out that specifics of self-adaptive systems require special attention in the experimental process, including the distinction of the managing system (i.e., the target of evaluation) and the managed system, the presence of uncertainties that affect the system behavior and hence need to be taken into account in data analysis, and the potential of managed systems to be reused across experiments, beyond replications. To conclude, we offer a set of suggestions derived from our study that can be used as input to enhance future experiments in self-adaptive systems.
Modern open source software development heavily relies on the issue tracking systems to manage their feature requests, bug reports, tasks, and other similar artifacts. Together, those issues form a complex network with links to each other. The heterogeneous character of issues inherently results in varied link types and therefore poses a great challenge for users to create and maintain the label of the link manually. The goal of most existing automated issue link construction techniques ceases with only examining the existence of links between issues. In this work, we focus on the next important question of whether we can assess the type of issue link automatically through a data-driven method. We analyze the links between issues and their labels used the issue tracking system for 66 open source projects. Using three projects, we demonstrate promising results when using supervised machine learning classification for the task of link label recovery with careful model selection and tuning, achieving F1 scores of between 0.56-0.70 for the three studied projects. Further, the performance of our method for future link label prediction is convincing when there is sufficient historical data. Our work signifies the first step in systematically manage and maintain issue links faced in practice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا