No Arabic abstract
Hydrogen fuel can contribute as a masterpiece in conceiving a robust carbon-free economic puzzle if cleaner methods to produce hydrogen become technically efficient and economically viable. Organic photocatalytic materials such as conjugated microporous materials (CMPs) are potential attractive candidates for water splitting as their energy levels and optical bandgap as well as porosity are tunable through chemical synthesis. The performances of CMPs depend also on the mass transfer of reactants, intermediates and products. Here, we study the mass transfer of water (H2O and D2O), and of triethylamine used as a hole scavenger for hydrogen evolution, by means of neutron spectroscopy. We find that the stiffness of the nodes of the CMPs is correlated with an increase in trapped water, reflected by motions too slow to be quantified by quasi-elastic neutron scattering (QENS). Our study highlights that the addition of the polar sulfone group results in additional interactions between water and the CMP, as evidenced by inelastic neutron scattering (INS), leading to changes in the translational diffusion of water, as determined from the QENS measurements. No changes in triethylamine motions could be observed within CMPs from the present investigations.
The quest for efficient and economically accessible cleaner methods to develop sustainable carbon-free energy sources induced a keen interest in the production of hydrogen fuel. This can be achieved via the water-splitting process exploiting solar energy but requiring the use of adequate photocatalysts. Covalent triazine-based frameworks (CTFs) are target photocatalysts for water-splitting. Both electronic and structural characteristics of CTFs, optical bandgaps and porosity, are directly relevant for water-splitting. These can be engineered through chemical design. Porosity can be beneficial to water-splitting by providing larger surface area for the catalytic reactions. However, porosity can also affect both charge transport within the photocatalyst and mass transfer of both reactants and products, thus impacting the overall kinetics of the reaction. We focus on the link between chemical design and water (reactants) mass transfer, playing a key role in the water uptake process and the subsequent hydrogen generation. We use neutron spectroscopy to study water mass transfer in two porous CTFs, CTF-CN and CTF-2, that differ in the polarity of their struts. Quasi-elastic neutron scattering (QENS) is used to quantify the amount of bound water and the translational diffusion of water. Inelastic neutron scattering measurements complement QENS and provides insights into the softness of the CTF structures and the changes in librational degrees of freedom of water in CTFs. We show that CTF-CN exhibits smaller surface area and water uptake due to a softer structure than CTF-2. The current study leads to new insights into the structure-dynamics-property relationship of CTF photo-catalysts that pave the road for a better understanding of the guest-host interaction at the basis of water splitting applications.
Organic semiconductors have the remarkable property that their optical excitation not only generates charge-neutral electron-hole pairs (excitons) but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.
We present dynamic Monte Carlo simulations of a lattice-gas model for bromine electrodeposition on single-crystal silver (100). This system undergoes a continuous phase transition between a disordered phase at low electrode potentials and a commensurate c(2X2) phase at high potentials. The lattice-gas parameters are determined by fitting simulated equilibrium adsorption isotherms to chronocoulometric data, and free-energy barriers for adsorption/desorption and lateral diffusion are estimated from ab initio data in the literature. Cyclic voltammograms in the quasi-static limit are obtained by equilibrium Monte Carlo simulations, while for nonzero potential scan rates we use dynamic Monte Carlo simulation. The butterfly shapes of the simulated voltammograms are in good agreement with experiments. Simulated potential-step experiments give results for the time evolution of the Br coverage, as well as the c(2X2) order parameter and its correlation length. During phase ordering following a positive potential step, the system obeys dynamic scaling. The disordering following a negative potential step is well described by random desorption with diffusion. Both ordering and disordering processes are strongly influenced by the ratio of the time scales for desorption and diffusion. Our results should be testable by experiments, in particular cyclic voltammetry and surface X-ray scattering.
Oriented block copolymers exhibit a buckling instability when submitted to a tensile test perpendicular to the lamellae direction. In this paper we study this behavior using a coarse grained molecular dynamics simulation approach. Coarse grained models of lamellar copolymers with alternate glassy rubbery layers are generated using the Radical Like Polymerization method, and their mechanical response is studied. For large enough systems, uniaxial tensile tests perpendicular to the direction of the lamellae reveal the occurrence of the buckling instability at low strain. The results that emerge from molecular simulation are compared to an elastic theory of the buckling instability introduced by Read and coworkers. At high strain rates, significant differences are observed between elastic theory and simulation results for the buckling strain and the buckling wavelength. We explain this difference by the strain rate dependence of the mechanical response. A simple model that takes into account the influence of the strain rate in the mechanical response is presented to rationalize the results at low and moderate strain rates. At very high strain rates, cavitation takes place in the rubbery phase of the sample and limits the validity of the approach.
This paper presents results of a recent study of multiferroic CCO by means of single crystal neutron diffraction. This system has two close magnetic phase transitions at $T sub{N1}=24.2$ K and $T sub{N2}=23.6$ K. The low temperature magnetic structure below $T sub{N2}$ is unambiguously determined to be a fully 3-dimensional proper screw. Between $T sub{N1}$ and $T sub{N2}$ antiferromagnetic order is found that is essentially 2-dimensional. In this narrow temperature range, magnetic near neighbor correlations are still long range in the ($H,K$) plane, whereas nearest neighbors along the $L$-direction are uncorrelated. Thus, the multiferroic state is realized only in the low-temperature 3-dimensional state and not in the 2-dimensional state.