Do you want to publish a course? Click here

Noncollinear antiferromagnetic order in the buckled honeycomb lattice of magnetoelectric Co4Ta2O9 determined by single-crystal neutron diffraction

110   0   0.0 ( 0 )
 Added by Sungkyun Choi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Co4Ta2O9 exhibits a three-dimensional magnetic lattice based on the buckled honeycomb motif. It shows unusual magnetoelectric effects, including the sign change and non-linearity. These effects cannot be understood without the detailed knowledge of the magnetic structure. Herein, we report neutron diffraction and direction-dependent magnetic susceptibility measurements on Co4Ta2O9 single crystals. Below 20.3 K, we find a long-range antiferromagnetic order in the alternating buckled and flat honeycomb layers of Co2+ ions stacked along the c axis. Within experimental accuracy, the magnetic moments lie in the ab plane. They form a canted antiferromagnetic structure with a tilt angle of ~ 14 degrees at 15 K in the buckled layers, while the magnetic moments in each flat layer are collinear. This is directly evidenced by a finite (0, 0, 3) magnetic Bragg peak intensity, which would be absent in the collinear magnetic order. The magnetic space group is C2/c. It is different from the previously reported C2/c group, also found in the isostructural Co4Nb2O9. The revised magnetic structure successfully explains the major features of the magnetoelectric tensor of Co4Ta2O9 within the framework of the spin-flop model.



rate research

Read More

Through analysis of single crystal neutron diffraction data, we present the magnetic structures of magnetoelectric Co4Nb2O9 under various magnetic fields. In zero-field, neutron diffraction experiments below TN=27 K reveal that the Co2+ moments order primarily along the a* direction without any spin canting along the c axis, manifested by the magnetic symmetry C2/c. The moments of nearest neighbor Co atoms order ferromagnetically with a small cant away from the next nearest neighbor Co moments along the c axis. In the applied magnetic field H//a, three magnetic domains were aligned with their major magnetic moments perpendicular to the magnetic field with no indication of magnetic phase transitions. The influences of magnetic fields on the magnetic structures associated with the observed magnetoelectric coupling are discussed.
Strongly correlated materials with multiple order parameters provide unique insights into the fundamental interactions in condensed matter systems and present opportunities for innovative technological applications. A class of antiferromagnetic honeycomb lattices compounds, A4B2O9 (A = Co, Fe, Mn; B = Nb, Ta), have been explored owing to the occurrence of linear magnetoelectricity. We observe a highly nonlinear magnetoelectric effect on single crystals of Co4Ta2O9 (CTO), distinctive from the linear behavior in the isostructural Co4Nb2O9. Ferroelectricity emerges primarily along the [110] direction under magnetic fields, with the onset of antiferromagnetic order at TN = 20.5 K. For in-plane magnetic field, a spin-flop occurs at HC ~ 0.3 T, above which the ferroelectric polarization gradually becomes negative and reaches a broad minimum. Upon increasing magnetic field further, the polarization crosses zero and increases continuously to ~60 uC/m2 at 9 T. In contrast, the polarization for a magnetic field perpendicular to the hexagonal plane increases monotonously and reaches ~80 uC/m2 at 9 T. This observation of a strongly nonlinear magnetoelectricity suggests that two types of inequivalent Co2+ sublattices generate magnetic field-dependent ferroelectric polarization with opposite signs. These results motivate fundamental and applied research on the intriguing magnetoelectric characteristics of these honeycomb lattice materials.
Motivated by the recently synthesized insulating nickelate Ni$_2$Mo$_3$O$_8$, which has been reported to have an unusual non-collinear magnetic order of Ni$^{2+}$ $S=1$ moments with a nontrivial angle between adjacent spins, we construct an effective spin-1 model on the honeycomb lattice, with the exchange parameters determined with the help of first principles electronic structure calculations. The resulting bilinear-biquadratic model, supplemented with the realistic crystal-field induced anisotropy, favors the collinear Neel state. We find that the crucial key to explaining the observed noncollinear spin structure is the inclusion of the Dzyaloshinskii--Moriya (DM) interaction between the neighboring spins. By performing the variational mean-field and linear spin-wave theory (LSWT) calculations, we determine that a realistic value of the DM interaction $Dapprox 2.78$ meV is sufficient to quantitatively explain the observed angle between the neighboring spins. We furthermore compute the spectrum of magnetic excitations within the LSWT and random-phase approximation (RPA) which should be compared to future inelastic neutron measurements.
194 - Y. Xiao , Y. Su , M. Meven 2009
Among various parent compounds of iron pnictide superconductors, EuFe2As2 stands out due to the presence of both spin density wave of Fe and antiferromagnetic ordering (AFM) of the localized Eu2+ moment. Single crystal neutron diffraction studies have been carried out to determine the magnetic structure of this compound and to investigate the coupling of two magnetic sublattices. Long range AFM ordering of Fe and Eu spins was observed below 190 K and 19 K, respectively. The ordering of Fe2+ moments is associated with the wave vector k = (1,0,1) and it takes place at the same temperature as the tetragonal to orthorhombic structural phase transition, which indicates the strong coupling between structural and magnetic components. The ordering of Eu moment is associated with the wave vector k = (0,0,1). While both Fe and Eu spins are aligned along the long a axis as experimentally determined, our studies suggest a weak coupling between the Fe and Eu magnetism.
149 - W. T. Jin , M. Meven , H. Deng 2019
The magnetic structure of the nonmetallic metal FeCrAs, a compound with the characters of both metals and insulators, was examined as a function of temperature using single-crystal neutron diffraction. The magnetic propagation vector was found to be $mathit{k}$ = (1/3, 1/3, 0), and the magnetic reflections disppeared above $mathit{T_{N}}$ = 116(1) K. In the ground state, the Cr sublattice shows an in-plane spiral antiferromagnetic order. The moment sizes of the Cr ions were found to be small, due to strong magnetic frustration in the distorted Kagome lattice or the itinerant nature of the Cr magnetism, and vary between 0.8 and 1.4 $mu_{B}$ on different sites as expected for a spin-density-wave (SDW) type order. The upper limit of the moment on the Fe sublattice is estimated to be less than 0.1 $mu_{B}$. With increasing temperature up to 95 K, the Cr moments cant out of the $mathit{ab}$ plane gradually, with the in-plane components being suppressed and the out-of-plane components increasing in contrast. This spin-reorientation of Cr moments can explain the dip in the $mathit{c}$-direction magnetic susceptibility and the kink in the magnetic order parameter at $mathit{T_{O}}$ ~ 100 K, a second magnetic transition which was unexplained before. We have also discussed the similarity between FeCrAs and the model itinerant magnet Cr, which exhibits spin-flip transitions and SDW-type antiferromagnetism.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا