No Arabic abstract
Electromagnetic field confinement is crucial for nanophotonic technologies, since it allows for enhancing light-matter interactions, thus enabling light manipulation in deep sub-wavelength scales. In the terahertz (THz) spectral range, radiation confinement is conventionally achieved with specially designed metallic structures - such as antennas or nanoslits - with large footprints due to the rather long wavelengths of THz radiation. In this context, phonon polaritons - light coupled to lattice vibrations - in van der Waals (vdW) crystals have emerged as a promising solution for controlling light beyond the diffraction limit, as they feature extreme field confinements and low optical losses. However, experimental demonstration of nanoscale-confined phonon polaritons at THz frequencies has so far remained elusive. Here, we provide it by employing scattering-type scanning near-field optical microscopy (s-SNOM) combined with a free-electron laser (FEL) to reveal a range of low-loss polaritonic excitations at frequencies from 8 to 12 THz in the vdW semiconductor ${alpha}-MoO_3$. We visualize THz polaritons with i) in-plane hyperbolic dispersion, ii) extreme nanoscale field confinement (below ${lambda}_o/75$) and iii) long polariton lifetimes, with a lower limit of > 2 ps.
Van der Waals materials and heterostructures manifesting strongly bound room temperature exciton states exhibit emergent physical phenomena and are of a great promise for optoelectronic applications. Here, we demonstrate that nanostructured multilayer transition metal dichalcogenides by themselves provide an ideal platform for excitation and control of excitonic modes, paving the way to exciton-photonics. Hence, we show that by patterning the TMDCs into nanoresonators, strong dispersion and avoided crossing of excitons and hybrid polaritons with interaction potentials exceeding 410 meV may be controlled with great precision. We further observe that inherently strong TMDC exciton absorption resonances may be completely suppressed due to excitation of hybrid photon states and their interference. Our work paves the way to a next generation of integrated exciton optoelectronic nano-devices and applications in light generation, computing, and sensing.
Spin and photonic systems are at the heart of modern information devices and emerging quantum technologies. An interplay between electron-hole pairs (excitons) in semiconductors and collective spin excitations (magnons) in magnetic crystals would bridge these heterogeneous systems, leveraging their individual assets in novel interconnected devices. Here, we report the magnon-exciton coupling at the interface between a magnetic thin film and an atomically-thin semiconductor. Our approach allies the long-lived magnons hosted in a film of yttrium iron garnet (YIG) to strongly-bound excitons in a flake of a transition metal dichalcogenide, MoSe$_2$. The magnons induce on the excitons a dynamical valley Zeeman effect ruled by interfacial exchange interactions. This nascent class of hybrid system suggests new opportunities for information transduction between microwave and optical regions.
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der Waals interactions. However, the number of possible combinations within this library is staggering, and fully exploring their potential is a daunting task. Here we introduce van der Waals metamaterials to rapidly prototype and screen their quantum counterparts. These layered metamaterials are designed to reshape the flow of ultrasound to mimic electron motion. In particular, we show how to construct analogues of all stacking configurations of bilayer and trilayer graphene through the use of interlayer membranes that emulate van der Waals interactions. By changing the membranes density and thickness, we reach coupling regimes far beyond that of conventional graphene. We anticipate that van der Waals metamaterials will explore, extend, and inform future electronic devices. Equally, they allow the transfer of useful electronic behavior to acoustic systems, such as flat bands in magic-angle twisted bilayer graphene, which may aid the development of super-resolution ultrasound imagers.
The designer approach has become a new paradigm in accessing novel quantum phases of matter. Moreover, the realization of exotic states such as topological insulators, superconductors and quantum spin liquids often poses challenging or even contradictory demands for any single material. For example, it is presently unclear if topological superconductivity, which has been suggested as a key ingredient for topological quantum computing, exists at all in any naturally occurring material . This problem can be circumvented by using designer heterostructures combining different materials, where the desired physics emerges from the engineered interactions between the different components. Here, we employ the designer approach to demonstrate two major breakthroughs - the fabrication of van der Waals (vdW) heterostructures combining 2D ferromagnetism with superconductivity and the observation of 2D topological superconductivity. We use molecular-beam epitaxy (MBE) to grow two-dimensional islands of ferromagnetic chromium tribromide (CrBr$_3$) on superconducting niobium diselenide (NbSe$_2$) and show the signatures of one-dimensional Majorana edge modes using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). The fabricated two-dimensional vdW heterostructure provides a high-quality controllable platform that can be integrated in device structures harnessing topological superconductivity. Finally, layered heterostructures can be readily accessed by a large variety of external stimuli potentially allowing external control of 2D topological superconductivity through electrical, mechanical, chemical, or optical means.
Quantum corrections to charge transport can give rise to an oscillatory magnetoconductance, typically observed in mesoscopic samples with a length shorter than or comparable with the phase coherence length. Here, we report the observation of magnetoconductance oscillations periodic in magnetic field with an amplitude of the order of $e^2/h$ in macroscopic samples of Highly Oriented Pyrolytic Graphite (HOPG). The observed effect emerges when all carriers are confined to their lowest Landau levels. We argue that this quantum interference phenomenon can be explained by invoking moire superlattices with a discrete distribution in periodicity. According to our results, when the magnetic length $ell_B$, the Fermi wave length $lambda_F$ and the length scale of fluctuations in local chemical potential are comparable in a layered conductor, quantum corrections can be detected over centimetric length scales.