Do you want to publish a course? Click here

The impact of stellar rotation on the black hole mass-gap from pair-instability supernovae

99   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Models of pair-instability supernovae (PISNe) predict a gap in black hole (BH) masses between $sim 45M_odot-120M_odot$, which is referred to as the upper BH mass-gap. With the advent of gravitational-wave astrophysics it has become possible to test this prediction, and there is an important associated effort to understand what theoretical uncertainties modify the boundaries of this gap. In this work we study the impact of rotation on the hydrodynamics of PISNe, which leave no compact remnant, as well as the evolution of pulsational-PISNe (PPISNe), which undergo thermonuclear eruptions before forming a compact object. We perform simulations of non-rotating and rapidly-rotating stripped helium stars in a metal poor environment $(Z_odot/50)$ in order to resolve the lower edge of the upper mass-gap. We find that the outcome of our simulations is dependent on the efficiency of angular momentum transport, with models that include efficient coupling through the Spruit-Tayler dynamo shifting the lower edge of the mass-gap upwards by $sim 4%$, while simulations that do not include this effect shift it upwards by $sim 15%$. From this, we expect the lower edge of the upper mass-gap to be dependent on BH spin, which can be tested as the number of observed BH mergers increases. Moreover, we show that stars undergoing PPISNe have extended envelopes ($Rsim 10-1000~R_odot$) at iron-core collapse, making them promising progenitors for ultra-long gamma-ray bursts.



rate research

Read More

We perform a binary population synthesis calculation incorporating very massive population (Pop.) III stars up to 1500 $M_odot$, and investigate the nature of binary black hole (BBH) mergers. Above the pair-instability mass gap, we find that the typical primary black hole (BH) mass is 135-340 $M_odot$. The maximum primary BH mass is as massive as 686 $M_odot$. The BBHs with both of their components above the mass gap have low effective inspiral spin $sim$ 0. So far, no conclusive BBH merger beyond the mass gap has been detected, and the upper limit on the merger rate density is obtained. If the initial mass function (IMF) of Pop. III stars is simply expressed as $xi_m(m) propto m^{-alpha}$ (single power law), we find that $alpha gtrsim 2.8$ is needed in order for the merger rate density not to exceed the upper limit. In the future, the gravitational wave detectors such as Einstein telescope and Pre-DECIGO will observe BBH mergers at high redshift. We suggest that we may be able to impose a stringent limit on the Pop. III IMF by comparing the merger rate density obtained from future observations with that derived theoretically.
Gravitational-wave detections are now starting to probe the mass distribution of stellar-mass black holes (BHs). Robust predictions from stellar models are needed to interpret these. Theory predicts the existence of a gap in the BH mass distribution because of pair-instability supernova. The maximum BH mass below the gap is the result of pulsational mass loss. We evolve massive helium stars through their late hydrodynamical phases of evolution using the open-source MESA stellar evolution code. We find that the location of the lower edge of the mass gap at 45$M_odot$ is remarkably robust against variations in the metallicity ($approx 3M_odot$), the treatment of internal mixing ($approx 1M_odot$), stellar wind mass loss ($approx 4M_odot$), making it the most robust predictions for the final stages of massive star evolution. The reason is that the onset of the instability is dictated by the near-final core mass, which in turn sets the resulting BH mass. However, varying $^{12}Cleft(alpha,gammaright)^{16}O$ reaction rate within its $1sigma$ uncertainties shifts the location of the gap between $40M_odot$ and $56M_odot$. We provide updated analytic fits for population synthesis simulations. Our results imply that the detection of merging BHs can provide constraints on nuclear astrophysics. Furthermore, the robustness against metallicity suggests that there is a universal maximum for the location of the lower edge of the gap, which is insensitive to the formation environment and redshift for first-generation BHs. This is promising for the possibility to use the location of the gap as a standard siren across the Universe.
Stellar evolution theory predicts a gap in the black hole birth function caused by the pair instability. Presupernova stars that have a core mass below some limiting value, Mlo, after all pulsational activity is finished, collapse to black holes, whereas more massive ones, up to some limiting value, Mhi, explode, promptly and completely, as pair-instability supernovae. Previous work has suggested Mlo is approximately 50 solar masses and Mhi is approximately 130 solar masses. These calculations have been challenged by recent LIGO observations that show many black holes merging with individual masses, Mlo is least some 65 solar masses. Here we explore four factors affecting the theoretical estimates for the boundaries of this mass gap: nuclear reaction rates, evolution in detached binaries, rotation, and hyper-Eddington accretion after black hole birth. Current uncertainties in reaction rates by themselves allow Mlo to rise to 64 solar masses and Mhi as large as 161 solar masses. Rapid rotation could further increase Mlo to about 70 solar masses, depending on the treatment of magnetic torques. Evolution in detached binaries and super-Eddington accretion can, with great uncertainty, increase Mlo still further. Dimensionless Kerr parameters close to unity are allowed for the more massive black holes produced in close binaries, though they are generally smaller.
We investigate the impact of stellar rotation on the formation of black holes (BHs), by means of our population-synthesis code SEVN. Rotation affects the mass function of BHs in several ways. In massive metal-poor stars, fast rotation reduces the minimum zero-age main sequence (ZAMS) mass for a star to undergo pair instability and pulsational pair instability. Moreover, stellar winds are enhanced by rotation, peeling-off the entire hydrogen envelope. As a consequence of these two effects, the maximum BH mass we expect from the collapse a rotating metal-poor star is only $sim{}45$ M$_odot$, while the maximum mass of a BH born from a non-rotating star is $sim{}60$ M$_odot$. Furthermore, stellar rotation reduces the minimum ZAMS mass for a star to collapse into a BH from $sim{}18-25$ M$_odot$ to $sim{}13-18$ M$_odot$. Finally, we have investigated the impact of different core-collapse supernova (CCSN) prescriptions on our results. While the threshold value of compactness for direct collapse and the fallback efficiency strongly affect the minimum ZAMS mass for a star to collapse into a BH, the fraction of hydrogen envelope that can be accreted onto the final BH is the most important ingredient to determine the maximum BH mass. Our results confirm that the interplay between stellar rotation, CCSNe and pair instability plays a major role in shaping the BH mass spectrum.
During the first three observing runs of the Advanced gravitational-wave detector network, the LIGO/Virgo collaboration detected several black hole binary (BHBH) mergers. As the population of detected BHBH mergers grows, it will become possible to constrain different channels for their formation. Here we consider the chemically homogeneous evolution (CHE) channel in close binaries, by performing population synthesis simulations that combine realistic binary models with detailed cosmological calculations of the chemical and star-formation history of the Universe. This allows us to constrain population properties, as well as cosmological and aLIGO/aVirgo detection rates of BHBH mergers formed through this pathway. We predict a BHBH merger rate at redshift zero of $5.8 , textrm{Gpc}^{-3} textrm{yr}^{-1}$ through the CHE channel, to be compared with aLIGO/aVirgos measured rate of ${53.2}_{-28.2}^{+55.8} , text{Gpc}^{-3} text{yr}^{-1}$, and find that eventual merger systems have BH masses in the range $17 - 43 , textrm{M}_{odot}$ below the pair-instability supernova (PISN) gap, and $>124 , textrm{M}_{odot}$ above the PISN gap. We investigate effects of momentum kicks during black hole formation, and calculate cosmological and magnitude limited PISN rates. We also study the effects of high-redshift deviations in the star formation rate. We find that momentum kicks tend to increase delay times of BHBH systems, and our magnitude limited PISN rate estimates indicate that current deep surveys should be able to detect such events. Lastly, we find that our cosmological merger rate estimates change by at most $sim 8%$ for mild deviations of the star formation rate in the early Universe, and by up to $sim 40%$ for extreme deviations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا