We present a differentiable simulation architecture for articulated rigid-body dynamics that enables the augmentation of analytical models with neural networks at any point of the computation. Through gradient-based optimization, identification of the simulation parameters and network weights is performed efficiently in preliminary experiments on a real-world dataset and in sim2sim transfer applications, while poor local optima are overcome through a random search approach.
Differentiable simulators provide an avenue for closing the sim-to-real gap by enabling the use of efficient, gradient-based optimization algorithms to find the simulation parameters that best fit the observed sensor readings. Nonetheless, these analytical models can only predict the dynamical behavior of systems for which they have been designed. In this work, we study the augmentation of a novel differentiable rigid-body physics engine via neural networks that is able to learn nonlinear relationships between dynamic quantities and can thus learn effects not accounted for in traditional simulators.Such augmentations require less data to train and generalize better compared to entirely data-driven models. Through extensive experiments, we demonstrate the ability of our hybrid simulator to learn complex dynamics involving frictional contacts from real data, as well as match known models of viscous friction, and present an approach for automatically discovering useful augmentations. We show that, besides benefiting dynamics modeling, inserting neural networks can accelerate model-based control architectures. We observe a ten-fold speed-up when replacing the QP solver inside a model-predictive gait controller for quadruped robots with a neural network, allowing us to significantly improve control delays as we demonstrate in real-hardware experiments. We publish code, additional results and videos from our experiments on our project webpage at https://sites.google.com/usc.edu/neuralsim.
We propose a new technique for pushing an unknown object from an initial configuration to a goal configuration with stability constraints. The proposed method leverages recent progress in differentiable physics models to learn unknown mechanical properties of pushed objects, such as their distributions of mass and coefficients of friction. The proposed learning technique computes the gradient of the distance between predicted poses of objects and their actual observed poses and utilizes that gradient to search for values of the mechanical properties that reduce the reality gap. The proposed approach is also utilized to optimize a policy to efficiently push an object toward the desired goal configuration. Experiments with real objects using a real robot to gather data show that the proposed approach can identify the mechanical properties of heterogeneous objects from a small number of pushing actions.
In this paper, we present Neural-Swarm, a nonlinear decentralized stable controller for close-proximity flight of multirotor swarms. Close-proximity control is challenging due to the complex aerodynamic interaction effects between multirotors, such as downwash from higher vehicles to lower ones. Conventional methods often fail to properly capture these interaction effects, resulting in controllers that must maintain large safety distances between vehicles, and thus are not capable of close-proximity flight. Our approach combines a nominal dynamics model with a regularized permutation-invariant Deep Neural Network (DNN) that accurately learns the high-order multi-vehicle interactions. We design a stable nonlinear tracking controller using the learned model. Experimental results demonstrate that the proposed controller significantly outperforms a baseline nonlinear tracking controller with up to four times smaller worst-case height tracking errors. We also empirically demonstrate the ability of our learned model to generalize to larger swarm sizes.
One fundamental difficulty in robotic learning is the sim-real gap problem. In this work, we propose to use segmentation as the interface between perception and control, as a domain-invariant state representation. We identify two sources of sim-real gap, one is dynamics sim-real gap, the other is visual sim-real gap. To close dynamics sim-real gap, we propose to use closed-loop control. For complex task with segmentation mask input, we further propose to learn a closed-loop model-free control policy with deep neural network using imitation learning. To close visual sim-real gap, we propose to learn a perception model in real environment using simulated target plus real background image, without using any real world supervision. We demonstrate this methodology in eye-in-hand grasping task. We train a closed-loop control policy model that taking the segmentation as input using simulation. We show that this control policy is able to transfer from simulation to real environment. The closed-loop control policy is not only robust with respect to discrepancies between the dynamic model of the simulated and real robot, but also is able to generalize to unseen scenarios where the target is moving and even learns to recover from failures. We train the perception segmentation model using training data generated by composing real background images with simulated images of the target. Combining the control policy learned from simulation with the perception model, we achieve an impressive $bf{88%}$ success rate in grasping a tiny sphere with a real robot.
Physics engines play an important role in robot planning and control; however, many real-world control problems involve complex contact dynamics that cannot be characterized analytically. Most physics engines therefore employ . approximations that lead to a loss in precision. In this paper, we propose a hybrid dynamics model, simulator-augmented interaction networks (SAIN), combining a physics engine with an object-based neural network for dynamics modeling. Compared with existing models that are purely analytical or purely data-driven, our hybrid model captures the dynamics of interacting objects in a more accurate and data-efficient manner.Experiments both in simulation and on a real robot suggest that it also leads to better performance when used in complex control tasks. Finally, we show that our model generalizes to novel environments with varying object shapes and materials.
Eric Heiden
,David Millard
,Erwin Coumans
.
(2020)
.
"Augmenting Differentiable Simulators with Neural Networks to Close the Sim2Real Gap"
.
David Millard
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا