No Arabic abstract
This work explores whether gravitational waves (GWs) from neutron star (NS) mountains can be detected with current 2nd-generation and future 3rd-generation GW detectors. In particular, we focus on a scenario where transient mountains are formed immediately after a NS glitch. In a glitch, a NSs spin frequency abruptly increases and then often exponentially recovers back to, but never quite reaches, the spin frequency prior to the glitch. If the recovery is ascribed to an additional torque due to a transient mountain, we find that GWs from that mountain are marginally-detectable with Advanced LIGO at design sensitivity and is very likely to be detectable for 3rd-generation detectors such as the Einstein Telescope. Using this model, we are able to find analytical expressions for the GW amplitude and its duration in terms of observables.
We present an effective, low-dimensionality frequency-domain template for the gravitational wave signal from the stellar remnants from binary neutron star coalescence. A principal component decomposition of a suite of numerical simulations of binary neutron star mergers is used to construct orthogonal basis functions for the amplitude and phase spectra of the waveforms for a variety of neutron star equations of state and binary mass configurations. We review the phenomenology of late merger / post-merger gravitational wave emission in binary neutron star coalescence and demonstrate how an understanding of the dynamics during and after the merger leads to the construction of a universal spectrum. We also provide a discussion of the prospects for detecting the post-merger signal in future gravitational wave detectors as a potential contribution to the science case for third generation instruments. The template derived in our analysis achieves $>90%$ match across a wide variety of merger waveforms and strain sensitivity spectra for current and potential gravitational wave detectors. A Fisher matrix analysis yields a preliminary estimate of the typical uncertainty in the determination of the dominant post-merger oscillation frequency $f_{mathrm{peak}}$ as $delta f_{mathrm{peak}} sim 50$Hz. Using recently derived correlations between $f_{mathrm{peak}}$ and the neutron star radii, this suggests potential constraints on the radius of a fiducial neutron star of $sim 220$,m. Such measurements would only be possible for nearby ($sim 30$Mpc) sources with advanced LIGO but become more feasible for planned upgrades to advanced LIGO and other future instruments, leading to constraints on the high density neutron star equation of state which are independent and complementary to those inferred from the pre-merger inspiral gravitational wave signal.
The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiralling objects and on the equation of state of nuclear matter. This could be either a black hole or a neutron star (NS), with the latter being either long-lived or too massive for stability implying delayed collapse to a black hole. Here, we present a search for gravitational waves from the remnant of the binary neutron star merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short ($lesssim1$ s) and intermediate-duration ($lesssim 500$ s) signals, which includes gravitational-wave emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root-sum-square of the gravitational-wave strain emitted from 1--4 kHz is $h_{rm rss}^{50%}=2.1times 10^{-22}$ Hz$^{-1/2}$ at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is $h_{rm rss}^{50%}=8.4times 10^{-22}$ Hz$^{-1/2}$ for a millisecond magnetar model, and $h_{rm rss}^{50%}=5.9times 10^{-22}$ Hz$^{-1/2}$ for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.
We present a search for continuous gravitational-wave signals from the young, energetic X-ray pulsar PSR J0537-6910 using data from the second and third observing runs of LIGO and Virgo. The search is enabled by a contemporaneous timing ephemeris obtained using NICER data. The NICER ephemeris has also been extended through 2020 October and includes three new glitches. PSR J0537-6910 has the largest spin-down luminosity of any pulsar and is highly active with regards to glitches. Analyses of its long-term and inter-glitch braking indices provided intriguing evidence that its spin-down energy budget may include gravitational-wave emission from a time-varying mass quadrupole moment. Its 62 Hz rotation frequency also puts its possible gravitational-wave emission in the most sensitive band of LIGO/Virgo detectors. Motivated by these considerations, we search for gravitational-wave emission at both once and twice the rotation frequency. We find no signal, however, and report our upper limits. Assuming a rigidly rotating triaxial star, our constraints reach below the gravitational-wave spin-down limit for this star for the first time by more than a factor of two and limit gravitational waves from the $l=m=2$ mode to account for less than 14% of the spin-down energy budget. The fiducial equatorial ellipticity is limited to less than about 3e-5, which is the third best constraint for any young pulsar.
In this work, analyzing the propagation of electromagnetic waves in the field of gravitational waves, we show the presence and significance of the so called surfing effect for pulsar timing measurements. It is shown that, due to the transverse nature of gravitational waves, the surfing effect leads to enormous pulsar timing residuals if the speed of gravitational waves is smaller than speed of light. This fact allows to place significant constraints on parameter $epsilon$, which characterizes the relative deviation of the speed of gravitational waves from the speed of light. We show that the existing constraints from pulsar timing measurements already place stringent limits on $epsilon$ and consequently on the mass of graviton $m_g$. These limits on $m_g$ are three orders of magnitude stronger than the current constraints from Solar System tests. The current constraints also allow to rule out massive gravitons as possible candidates for cold dark matter in galactic halo. In the near future, the gravitational wave background from extragalactic super massive black hole binaries, along with the expected sub-microsecond pulsar timing accuracy, will allow to achieve constrains of $epsilonlesssim 0.4%$ and possibly stronger.
In this work, we consider the possibility of energy release in pulsar magnetospheres deformed by gravitational waves from nearby sources. The strong electromagnetic fields in the magnetospheres may release non-negligible energy despite the weakness of the gravitational wave. When the background spacetime is perturbed due to the passage of a gravitational wave, the original force-free state of the inner magnetosphere will be slightly violated. The plasma-filled magnetosphere tends to evolve into new force-free states as the spacetime varies with time. During this process, a small portion of the electromagnetic energy stored in the magnetosphere will be released to the acceleration of charged particles along the magnetic field lines. When the pulsar is close enough to the gravitational wave source (e.g., $sim10^{-2}$ pc to the gravitational wave sources observed recently), the resulting energy loss rate is comparable with the radio luminosity of the pulsar. It is also noticed that, under very stringent conditions (for magnetars with much shorter distance to the sources), the released energy can reach the typical energy observed from fast radio bursts (FRBs).