Do you want to publish a course? Click here

Optimal one-dimensional structures for the principal eigenvalue of two-dimensional domains

216   0   0.0 ( 0 )
 Added by Giuseppe Buttazzo
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

A shape optimization problem arising from the optimal reinforcement of a membrane by means of one-dimensional stiffeners or from the fastest cooling of a two-dimensional object by means of ``conducting wires is considered. The criterion we consider is the maximization of the first eigenvalue and the admissible classes of choices are the one of one-dimensional sets with prescribed total length, or the one where the constraint of being connected (or with an a priori bounded number of connected components) is added. The corresponding relaxed problems and the related existence results are described.



rate research

Read More

Existence and uniqueness of solutions to the Navier-Stokes equation in dimension two with forces in the space $L^q( (0,T); mathbf{W}^{-1,p}(Omega))$ for $p$ and $q$ in appropriate parameter ranges are proven. The case of spatially measured-valued inhomogeneities is included. For the associated Stokes equation the well-posedness results are verified in arbitrary dimensions with $1 < p, q < infty$ arbitrary.
65 - Luca Nenna , Brendan Pass 2019
This paper is devoted to variational problems on the set of probability measures which involve optimal transport between unequal dimensional spaces. In particular, we study the minimization of a functional consisting of the sum of a term reflecting the cost of (unequal dimensional) optimal transport between one fixed and one free marginal, and another functional of the free marginal (of various forms). Motivating applications include Cournot-Nash equilibria where the strategy space is lower dimensional than the space of agent types. For a variety of different forms of the term described above, we show that a nestedness condition, which is known to yield much improved tractability of the optimal transport problem, holds for any minimizer. Depending on the exact form of the functional, we exploit this to find local differential equations characterizing solutions, prove convergence of an iterative scheme to compute the solution, and prove regularity results.
76 - Francois Hamel 2019
In this paper, we consider steady Euler flows in two-dimensional bounded annuli, as well as in exterior circular domains, in punctured disks and in the punctured plane. We always assume rigid wall boundary conditions. We prove that, if the flow does not have any stagnation point, and if it satisfies further conditions at infinity in the case of an exterior domain or at the center in the case of a punctured disk or the punctured plane, then the flow is circular, namely the streamlines are concentric circles. In other words, the flow then inherits the radial symmetry of the domain. The proofs are based on the study of the trajectories of the flow and the orthogonal trajectories of the gradient of the stream function, which is shown to satisfy a semilinear elliptic equation in the whole domain. In exterior or punctured domains, the method of moving planes is applied to some almost circular domains located between some streamlines of the flow, and the radial symmetry of the stream function is shown by a limiting argument. The paper also contains two Serrin-type results in simply or doubly connected bounded domains with free boundaries. Here, the flows are further assumed to have constant norm on each connected component of the boundary and the domains are then proved to be disks or annuli.
We prove the existence and pointwise bounds of the Green functions for stationary Stokes systems with measurable coefficients in two dimensional domains. We also establish pointwise bounds of the derivatives of the Green functions under a regularity assumption on the $L_1$-mean oscillations of the coefficients.
195 - Shanjian Tang , Wei Zhong , 2013
In this paper, an optimal switching problem is proposed for one-dimensional reflected backward stochastic differential equations (RBSDEs, for short) where the generators, the terminal values and the barriers are all switched with positive costs. The value process is characterized by a system of multi-dimensional RBSDEs with oblique reflection, whose existence and uniqueness are by no means trivial and are therefore carefully examined. Existence is shown using both methods of the Picard iteration and penalization, but under some different conditions. Uniqueness is proved by representation either as the value process to our optimal switching problem for one-dimensional RBSDEs, or as the equilibrium value process to a stochastic differential game of switching and stopping. Finally, the switched RBSDE is interpreted as a real option.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا