Controllability of Impulsive Semilinear Evolution Equations with Memory and Delay in Hilbert Spaces


Abstract in English

Inspired in our work on the controllability for the semilinear with memory cite{Carrasco-Guevara-Leiva:2017aa, Guevara-Leiva:2016aa, Guevara-Leiva:2017aa}, we present the general cases for the approximate controllability of impulsive semilinear evolution equations in a Hilbert space with memory and delay terms which arise from reaction-diffusion models. We prove that, for each initial and an arbitrary neighborhood of a final state, one can steer the system from the initial condition to this neighborhood of the final condition with an appropriated collection of admissible controls thanks to the delays. Our proof is based on semigroup theory and A.E. Bashirov et al. technique cite{Bashirov-Ghahramanlou:2015aa, Bashirov-Jneid:2013aa, Bashirov-Mahmudov:2007aa} which avoids fixed point theorems.

Download