Do you want to publish a course? Click here

Isocurvature modes: joint analysis of the CMB power spectrum and bispectrum

62   0   0.0 ( 0 )
 Added by Thomas Montandon
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform a joint analysis of the power spectrum and the bispectrum of the CMB temperature and polarization anisotropies to improve the constraints on isocurvature modes. We construct joint likelihoods, both for the existing Planck data, and to make forecasts for the future LiteBIRD and CMB-S4 experiments. We assume a general two-field inflation model with five free parameters, leading to one isocurvature mode (which can be CDM density, neutrino density or neutrino velocity) arbitrarily correlated with the adiabatic mode. We theoretically assess in which cases (of detecting and/or fixing parameters) improvements can be expected, to guide our subsequent numerical analyses. We find that for Planck, which detected neither isocurvature modes nor primordial non-Gaussianity, the joint analysis does not improve the constraints in the general case. However, if we fix additional parameters in the model, the improvements can be highly significant depending on the chosen parameter values. For LiteBIRD+CMB-S4 we study in which regions of parameter space compatible with the Planck results the joint analysis will improve the constraints or the significance of a detection. We find that, while for CDM isocurvature this region is very small, for the neutrino isocurvature modes it is much larger. In particular for neutrino velocity it can be about half of the Planck-allowed region, where the joint analysis reduces the isocurvature error bars by up to 70%. In addition the joint analysis can also improve the error bars of some of the standard cosmological parameters, by up to 30% for $theta_{MC}$ for example, by breaking the degeneracies with the correlation parameter between adiabatic and isocurvature modes.



rate research

Read More

We study the angular bispectrum of local type arising from the (possibly correlated) combination of a primordial adiabatic mode with an isocurvature one. Generically, this bispectrum can be decomposed into six elementary bispectra. We estimate how precisely CMB data, including polarization, can enable us to measure or constrain the six corresponding amplitudes, considering separately the four types of isocurvature modes (CDM, baryon, neutrino density, neutrino velocity). Finally, we discuss how the model-independent constraints on the bispectrum can be combined to get constraints on the parameters of multiple-field inflation models.
We present a joint likelihood analysis of the real-space power spectrum and bispectrum measured from a variety of halo and galaxy mock catalogs. A novel aspect of this work is the inclusion of nonlinear triangle configurations for the bispectrum, made possible by a complete next-to-leading order (one-loop) description of galaxy bias, as is already common practice for the power spectrum. Based on the goodness-of-fit and the unbiasedness of the parameter posteriors, we accomplish a stringent validation of this model compared to the leading order (tree-level) bispectrum. Using measurement uncertainties that correspond to an effective survey volume of $6,(mathrm{Gpc}/h)^3$, we determine that the one-loop corrections roughly double the applicable range of scales, from $sim 0.17,h/mathrm{Mpc}$ (tree-level) to $sim 0.3,h/mathrm{Mpc}$. This converts into a $1.5 - 2$x improvement on constraints of the linear bias parameter at fixed cosmology, and a $1.5 - 2.4$x shrinkage of uncertainties on the amplitude of fluctuations $A_s$, which clearly demonstrates the benefit of extracting information from nonlinear scales despite having to marginalize over a larger number of bias parameters. Besides, our precise measurements of galaxy bias parameters up to fourth order allow for thorough comparisons to coevolution relations, showing excellent agreement for all contributions generated by the nonlocal action of gravity. Using these relations in the likelihood analysis does not compromise the model validity and is crucial for obtaining the quoted improvements on $A_s$. We also analyzed the impact of higher-derivative and scale-dependent stochastic terms, finding that for a subset of our tracers the former can boost the performance of the tree-level model with constraints on $A_s$ that are only slightly degraded compared to the one-loop model.
Non-linear effects in the early Universe generate non-zero bispectra of the cosmic microwave background (CMB) temperature and polarization, even in the absence of primordial non-Gaussianity. In this paper, we compute the contributions from isocurvature modes to the CMB bispectra using a modified version of the second-order Boltzmann solver SONG. We investigate the ability of current and future CMB experiments to constrain these modes with observations of the bispectrum. Our results show that the enhancement due to single isocurvature modes mixed with the adiabatic mode is negligible for the parameter ranges currently allowed by the most recent Planck results. However, we find that a large compensated isocurvature mode can produce a detectable bispectrum when its correlation with the adiabatic mode is appreciable. The non-observation of this contribution in searches for the lensing bispectrum from Planck allows us to place a new constraint on the relative amplitude of the correlated part of the compensated isocurvature mode of $f_{rm CIP}=1pm100$. We compute forecasts for future observations by COrE, SO, CMB-S4 and an ideal experiment and conclude that a dedicated search for the bispectrum from compensated modes could rule out a number of scenarios realised in the curvaton model. In addition, the CMB-S4 experiment could detect the most extreme of those scenarios ($f_{rm CIP}=16.5$) at 2 to 3-$sigma$ significance.
We investigate the performance of a simple Bayesian fitting approach to correct the cosmic microwave background (CMB) B-mode polarization for gravitational lensing effects in the recovered probability distribution of the tensor-to-scalar ratio. We perform a two-dimensional power spectrum fit of the amplitude of the primordial B-modes (tensor-to-scalar ratio, $r$) and the amplitude of the lensing B-modes (parameter $A_{lens}$), jointly with the estimation of the astrophysical foregrounds including both synchrotron and thermal dust emissions. Using this Bayesian framework, we forecast the ability of the proposed CMB space mission LiteBIRD to constrain $r$ in the presence of realistic lensing and foreground contributions. We compute the joint posterior distribution of $r$ and $A_{lens}$, which we improve by adopting a prior on $A_{lens}$ taken from the South Pole Telescope (SPT) measurement. As it applies to the power spectrum, this approach cannot mitigate the uncertainty on $r$ that is due to E-mode cosmic variance transferred to B-modes by lensing, unlike standard delensing techniques that are performed on maps. However, the method allows to correct for the bias on $r$ induced by lensing, at the expense of a larger uncertainty due to the increased volume of the parameter space. We quantify, for different values of the tensor-to-scalar ratio, the trade-off between bias correction and increase of uncertainty on $r$. For LiteBIRD simulations, which include foregrounds and lensing contamination, we find that correcting the foreground-cleaned CMB B-mode power spectrum for the lensing bias, not the lensing cosmic variance, still guarantees a $3sigma$ detection of $r=5times 10^{-3}$. The significance of the detection is increased to $6sigma$ when the current SPT prior on $A_{lens}$ is adopted.
We investigate the potential of the galaxy power spectrum to constrain compensated isocurvature perturbations (CIPs), primordial fluctuations in the baryon density that are compensated by fluctuations in CDM density to ensure an unperturbed total matter density. We show that CIPs contribute to the galaxy overdensity at linear order, and if they are close to scale-invariant, their effects are nearly perfectly degenerate with the local PNG parameter $f_{rm nl}$ if they correlate with the adiabatic perturbations. This degeneracy can however be broken by analyzing multiple galaxy samples with different bias parameters, or by taking CMB priors on $f_{rm nl}$ into account. Parametrizing the amplitude of the CIP power spectrum as $P_{sigmasigma} = A^2P_{mathcal{R}mathcal{R}}$ (where $P_{mathcal{R}mathcal{R}}$ is the adiabatic power spectrum) we find, for a number of fiducial galaxy samples in a simplified forecast setup, that constraints on $A$, relative to those on $f_{rm nl}$, of order $sigma_{A}/sigma_{f_{rm nl}} approx 1-2$ are achievable for CIPs correlated with adiabatic perturbations, and $sigma_{A}/sigma_{f_{rm nl}} approx 5$ for the uncorrelated case. These values are independent of survey volume, and suggest that current galaxy data are already able to improve significantly on the tightest existing constraints on CIPs from the CMB. Future galaxy surveys that aim to achieve $sigma_{f_{rm nl}} sim 1$ have the potential to place even stronger bounds on CIPs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا