Do you want to publish a course? Click here

Gravitational wave spectra from strongly supercooled phase transitions

80   0   0.0 ( 0 )
 Added by Ville Vaskonen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study gravitational wave (GW) production in strongly supercooled cosmological phase transitions, taking particular care of models featuring a complex scalar field with a U$(1)$ symmetric potential. We perform lattice simulations of two-bubble collisions to properly model the scalar field gradients, and compute the GW spectrum sourced by them using the thin-wall approximation in many-bubble simulations. We find that in the U$(1)$ symmetric case the low-frequency spectrum is $proptoomega$ whereas for a real scalar field it is $proptoomega^3$. In both cases the spectrum decays as $omega^{-2}$ at high frequencies.



rate research

Read More

We study strongly supercooled cosmological phase transitions. We perform numerical lattice simulations of two-bubble collisions and demonstrate that, depending on the scalar potential, in the collision the field can either bounce to a false vacuum or remain oscillating around the true vacuum. We study if these cases can be distinguished from their gravitational wave signals and discuss the possibility of black hole formation in the bubble collisions.
We update predictions for the gravitational wave (GW) signal from a strongly supercooled phase transition in an illustrative classically conformal U(1)$_{B-L}$ model. We implement $propto gamma^2$ scaling of the friction on the bubble wall and update the estimates for the efficiency factors for GW production from bubble collisions and plasma-related sources. We take into account the fact that a small decay rate of the symmetry-breaking field may lead to brief matter-dominated era after the transition, as the field oscillates around its minimum before decaying. We find that a strong bubble collision signal occurs in a significant part of the parameter space, and that the modified redshift of the modes that re-enter the horizon during the matter-dominated period generates a characteristic tilted `plateau in the spectrum. The GW spectrum in this model would be detectable in the low-frequency range, e.g., by LISA, and in the mid-frequency range, e.g., by AION/MAGIS and AEDGE, and in the high-frequency range by LIGO and ET. The peak frequency of the signal is limited from below by collider constraints on the mass of the U(1)$_{B-L}$ gauge boson, while at high frequencies the slow decay of the scalar field and the resulting matter-dominated era diminishes the GW signal.
The LISA telescope will provide the first opportunity to probe the scenario of a first-order phase transition happening close to the electroweak scale. By now, it is evident that the main contribution to the GW spectrum comes from the sound waves propagating through the plasma. Current estimates of the GW spectrum are based on numerical simulations of a scalar field interacting with the plasma or on analytical approximations -- the so-called sound shell model. In this work we present a novel setup to calculate the GW spectra from sound waves. We use a hybrid method that uses a 1d simulation (with spherical symmetry) to evolve the velocity and enthalpy profiles of a single bubble after collision and embed it in a 3d realization of multiple bubble collisions, assuming linear superposition of the velocity and enthalpy. The main advantage of our method compared to 3d hydrodynamic simulations is that it does not require to resolve the scale of bubble wall thickness. This makes our simulations more economical and the only two relevant physical length scales that enter are the bubble size and the shell thickness (that are in turn enclosed by the box size and the grid spacing). The reduced costs allow for extensive parameter studies and we provide a parametrization of the final GW spectrum as a function of the wall velocity and the fluid kinetic energy.
We study the effect of density perturbations on the process of first-order phase transitions and gravitational wave production in the early Universe. We are mainly interested in how the distribution of nucleated bubbles is affected by fluctuations in the local temperature. We find that large-scale density fluctuations ($H_* < k_* < beta$) result in a larger effective bubble size at the time of collision, enhancing the produced amplitude of gravitational waves. The amplitude of the density fluctuations necessary for this enhancement is ${cal P}_zeta (k_*) gtrsim (beta / H_*)^{-2}$, and therefore the gravitational wave signal from first-order phase transitions with relatively large $beta / H_*$ can be significantly enhanced by this mechanism even for fluctuations with moderate amplitudes.
We investigate the potential for observing gravitational waves from cosmological phase transitions with LISA in light of recent theoretical and experimental developments. Our analysis is based on current state-of-the-art simulations of sound waves in the cosmic fluid after the phase transition completes. We discuss the various sources of gravitational radiation, the underlying parameters describing the phase transition and a variety of viable particle physics models in this context, clarifying common misconceptions that appear in the literature and identifying open questions requiring future study. We also present a web-based tool, PTPlot, that allows users to obtain up-to-date detection prospects for a given set of phase transition parameters at LISA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا