No Arabic abstract
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), is a threat to the global healthcare system and economic security. As of July 2020, no specific drugs or vaccines are yet available for COVID-19, fast and accurate diagnosis for SARS-CoV-2 is essential in slowing down the spread of COVID-19 and for efficient implementation of control and containment strategies. Magnetic immunoassay is a novel and emerging topic representing the frontiers of current biosensing and magnetics areas. The past decade has seen rapid growth in applying magnetic tools for biological and biomedical applications. Recent advances in magnetic materials and nanotechnologies have transformed current diagnostic methods to nanoscale and pushed the detection limit to early stage disease diagnosis. Herein, this review covers the literatures of magnetic immunoassay platforms for virus and pathogen detections, before COVID-19. We reviewed the popular magnetic immunoassay platforms including magnetoresistance (MR) sensors, magnetic particle spectroscopy (MPS), and nuclear magnetic resonance (NMR). Magnetic Point-of-Care (POC) diagnostic kits are also reviewed aiming at developing plug-and-play diagnostics to manage the SARS-CoV-2 outbreak as well as preventing future epidemics. In addition, other platforms that use magnetic materials as auxiliary tools for enhanced pathogen and virus detections are also covered. The goal of this review is to inform the researchers of diagnostic and surveillance platforms for SARS-CoV-2 and their performances.
Infectious diseases and human behavior are intertwined. On one side, our movements and interactions are the engines of transmission. On the other, the unfolding of viruses might induce changes to our daily activities. While intuitive, our understanding of such feedback loop is still limited. Before COVID-19 the literature on the subject was mainly theoretical and largely missed validation. The main issue was the lack of empirical data capturing behavioral change induced by diseases. Things have dramatically changed in 2020. Non-pharmaceutical interventions (NPIs) have been the key weapon against the SARS-CoV-2 virus and affected virtually any societal process. Travels bans, events cancellation, social distancing, curfews, and lockdowns have become unfortunately very familiar. The scale of the emergency, the ease of survey as well as crowdsourcing deployment guaranteed by the latest technology, several Data for Good programs developed by tech giants, major mobile phone providers, and other companies have allowed unprecedented access to data describing behavioral changes induced by the pandemic. Here, I aim to review some of the vast literature written on the subject of NPIs during the COVID-19 pandemic. In doing so, I analyze 347 articles written by more than 2518 of authors in the last $12$ months. While the large majority of the sample was obtained by querying PubMed, it includes also a hand-curated list. Considering the focus, and methodology I have classified the sample into seven main categories: epidemic models, surveys, comments/perspectives, papers aiming to quantify the effects of NPIs, reviews, articles using data proxies to measure NPIs, and publicly available datasets describing NPIs. I summarize the methodology, data used, findings of the articles in each category and provide an outlook highlighting future challenges as well as opportunities
There is increasing evidence that infection with SARS-CoV-2 can cause a spectrum of neurological symptoms. In this paper, we develop a theoretical concept underlying such neurological COVID-19 consequences by employing a non-equilibrium thermodynamic approach that allows linking the neuronal electric potential with a virus-induced pH variation. Our theoretical findings support further experimental work on therapeutically correcting electrolyte imbalances, such as Na$^+$ and K$^+$, to attenuate the neurological effects of SARS-CoV-2.
Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus. It is similar to influenza viruses and raises concerns through alarming levels of spread and severity resulting in an ongoing pandemic worldwide. Within eight months (by August 2020), it infected 24.0 million persons worldwide and over 824 thousand have died. Drones or Unmanned Aerial Vehicles (UAVs) are very helpful in handling the COVID-19 pandemic. This work investigates the drone-based systems, COVID-19 pandemic situations, and proposes an architecture for handling pandemic situations in different scenarios using real-time and simulation-based scenarios. The proposed architecture uses wearable sensors to record the observations in Body Area Networks (BANs) in a push-pull data fetching mechanism. The proposed architecture is found to be useful in remote and highly congested pandemic areas where either the wireless or Internet connectivity is a major issue or chances of COVID-19 spreading are high. It collects and stores the substantial amount of data in a stipulated period and helps to take appropriate action as and when required. In real-time drone-based healthcare system implementation for COVID-19 operations, it is observed that a large area can be covered for sanitization, thermal image collection, and patient identification within a short period (2 KMs within 10 minutes approx.) through aerial route. In the simulation, the same statistics are observed with an addition of collision-resistant strategies working successfully for indoor and outdoor healthcare operations. Further, open challenges are identified and promising research directions are highlighted.
The newly identified Coronavirus pneumonia, subsequently termed COVID-19, is highly transmittable and pathogenic with no clinically approved antiviral drug or vaccine available for treatment. The most common symptoms of COVID-19 are dry cough, sore throat, and fever. Symptoms can progress to a severe form of pneumonia with critical complications, including septic shock, pulmonary edema, acute respiratory distress syndrome and multi-organ failure. While medical imaging is not currently recommended in Canada for primary diagnosis of COVID-19, computer-aided diagnosis systems could assist in the early detection of COVID-19 abnormalities and help to monitor the progression of the disease, potentially reduce mortality rates. In this study, we compare popular deep learning-based feature extraction frameworks for automatic COVID-19 classification. To obtain the most accurate feature, which is an essential component of learning, MobileNet, DenseNet, Xception, ResNet, InceptionV3, InceptionResNetV2, VGGNet, NASNet were chosen amongst a pool of deep convolutional neural networks. The extracted features were then fed into several machine learning classifiers to classify subjects as either a case of COVID-19 or a control. This approach avoided task-specific data pre-processing methods to support a better generalization ability for unseen data. The performance of the proposed method was validated on a publicly available COVID-19 dataset of chest X-ray and CT images. The DenseNet121 feature extractor with Bagging tree classifier achieved the best performance with 99% classification accuracy. The second-best learner was a hybrid of the a ResNet50 feature extractor trained by LightGBM with an accuracy of 98%.
Novel coronavirus (COVID-19) outbreak, has raised a calamitous situation all over the world and has become one of the most acute and severe ailments in the past hundred years. The prevalence rate of COVID-19 is rapidly rising every day throughout the globe. Although no vaccines for this pandemic have been discovered yet, deep learning techniques proved themselves to be a powerful tool in the arsenal used by clinicians for the automatic diagnosis of COVID-19. This paper aims to overview the recently developed systems based on deep learning techniques using different medical imaging modalities like Computer Tomography (CT) and X-ray. This review specifically discusses the systems developed for COVID-19 diagnosis using deep learning techniques and provides insights on well-known data sets used to train these networks. It also highlights the data partitioning techniques and various performance measures developed by researchers in this field. A taxonomy is drawn to categorize the recent works for proper insight. Finally, we conclude by addressing the challenges associated with the use of deep learning methods for COVID-19 detection and probable future trends in this research area. This paper is intended to provide experts (medical or otherwise) and technicians with new insights into the ways deep learning techniques are used in this regard and how they potentially further works in combatting the outbreak of COVID-19.