DC electricity generation from dynamic polarized water-semiconductor interface


Abstract in English

Liquid electricity generator and hydrovoltaic technology have received numerous attentions, which can be divided into horizontal movement generator and vertical movement generator. The horizontal movement generator is limited for powering the integrated and miniaturized energy chip as the current output direction is depending on the moving direction of the water droplet, which means a sustainable and continuous direct-current (DC) electricity output can be hardly achieved because of the film of limited length. On the other hand, the existing vertical movement generators include triboelectricity or humidity gradient-based liquid electricity generator, where the liquid or water resource must be sustainably supplied to ensure continuous current output. Herein, we have designed an integratable vertical generator by sandwiching water droplets with semiconductor and metal, such as graphene or aluminum. This generator, named as polarized liquid molecular generator (PLMG), directly converts the lateral kinetic energy of water droplet into vertical DC electricity with an output voltage of up to ~1.0 V from the dynamic water-semiconductor interface. The fundamental discovery of PLMG is related to the non-symmetric structure of liquid molecules, such as water and alcohols, which can be polarized under the guidance of built-in field caused by the Fermi level difference between metal and semiconductor, while the symmetric liquid molecules cannot produce any electricity on the opposite. Integratable PLMG with a large output power of ~90 nW and voltage of ~2.7 V has been demonstrated, meanwhile its small internal resistance of ~250 kilohm takes a huge advantage in resistance matching with the impedance of electron components. The PLMG shows potential application value in the Internet of Things (IoTs) after proper miniaturization and integration.

Download