Do you want to publish a course? Click here

Collapsing Bandits and Their Application to Public Health Interventions

92   0   0.0 ( 0 )
 Added by Aditya Mate
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We propose and study Collpasing Bandits, a new restless multi-armed bandit (RMAB) setting in which each arm follows a binary-state Markovian process with a special structure: when an arm is played, the state is fully observed, thus collapsing any uncertainty, but when an arm is passive, no observation is made, thus allowing uncertainty to evolve. The goal is to keep as many arms in the good state as possible by planning a limited budget of actions per round. Such Collapsing Bandits are natural models for many healthcare domains in which workers must simultaneously monitor patients and deliver interventions in a way that maximizes the health of their patient cohort. Our main contributions are as follows: (i) Building on the Whittle index technique for RMABs, we derive conditions under which the Collapsing Bandits problem is indexable. Our derivation hinges on novel conditions that characterize when the optimal policies may take the form of either forward or reverse threshold policies. (ii) We exploit the optimality of threshold policies to build fast algorithms for computing the Whittle index, including a closed-form. (iii) We evaluate our algorithm on several data distributions including data from a real-world healthcare task in which a worker must monitor and deliver interventions to maximize their patients adherence to tuberculosis medication. Our algorithm achieves a 3-order-of-magnitude speedup compared to state-of-the-art RMAB techniques while achieving similar performance.

rate research

Read More

According to the Center for Disease Control and Prevention, in the United States hundreds of thousands initiate smoking each year, and millions live with smoking-related dis- eases. Many tobacco users discuss their habits and preferences on social media. This work conceptualizes a framework for targeted health interventions to inform tobacco users about the consequences of tobacco use. We designed a Twitter bot named Notobot (short for No-Tobacco Bot) that leverages machine learning to identify users posting pro-tobacco tweets and select individualized interventions to address their interest in tobacco use. We searched the Twitter feed for tobacco-related keywords and phrases, and trained a convolutional neural network using over 4,000 tweets dichotomously manually labeled as either pro- tobacco or not pro-tobacco. This model achieves a 90% recall rate on the training set and 74% on test data. Users posting pro- tobacco tweets are matched with former smokers with similar interests who posted anti-tobacco tweets. Algorithmic matching, based on the power of peer influence, allows for the systematic delivery of personalized interventions based on real anti-tobacco tweets from former smokers. Experimental evaluation suggests that our system would perform well if deployed. This research offers opportunities for public health researchers to increase health awareness at scale. Future work entails deploying the fully operational Notobot system in a controlled experiment within a public health campaign.
New ranking algorithms are continually being developed and refined, necessitating the development of efficient methods for evaluating these rankers. Online ranker evaluation focuses on the challenge of efficiently determining, from implicit user feedback, which ranker out of a finite set of rankers is the best. Online ranker evaluation can be modeled by dueling ban- dits, a mathematical model for online learning under limited feedback from pairwise comparisons. Comparisons of pairs of rankers is performed by interleaving their result sets and examining which documents users click on. The dueling bandits model addresses the key issue of which pair of rankers to compare at each iteration, thereby providing a solution to the exploration-exploitation trade-off. Recently, methods for simultaneously comparing more than two rankers have been developed. However, the question of which rankers to compare at each iteration was left open. We address this question by proposing a generalization of the dueling bandits model that uses simultaneous comparisons of an unrestricted number of rankers. We evaluate our algorithm on synthetic data and several standard large-scale online ranker evaluation datasets. Our experimental results show that the algorithm yields orders of magnitude improvement in performance compared to stateof- the-art dueling bandit algorithms.
The ubiquity of smartphone usage in many peoples lives make it a rich source of information about a persons mental and cognitive state. In this work we analyze 12 weeks of phone usage data from 113 older adults, 31 with diagnosed cognitive impairment and 82 without. We develop structured models of users smartphone interactions to reveal differences in phone usage patterns between people with and without cognitive impairment. In particular, we focus on inferring specific types of phone usage sessions that are predictive of cognitive impairment. Our model achieves an AUROC of 0.79 when discriminating between healthy and symptomatic subjects, and its interpretability enables novel insights into which aspects of phone usage strongly relate with cognitive health in our dataset.
During the global spread of COVID-19, Japan has been among the top countries to maintain a relatively low number of infections, despite implementing limited institutional interventions. Using a Tokyo Metropolitan dataset, this study investigated how these limited intervention policies have affected public health and economic conditions in the COVID-19 context. A causal loop analysis suggested that there were risks to prematurely terminating such interventions. On the basis of this result and subsequent quantitative modelling, we found that the short-term effectiveness of a short-term pre-emptive stay-at-home request caused a resurgence in the number of positive cases, whereas an additional request provided a limited negative add-on effect for economic measures (e.g. the number of electronic word-of-mouth (eWOM) communications and restaurant visits). These findings suggest the superiority of a mild and continuous intervention as a long-term countermeasure under epidemic pressures when compared to strong intermittent interventions.
A significant body of research in the data sciences considers unfair discrimination against social categories such as race or gender that could occur or be amplified as a result of algorithmic decisions. Simultaneously, real-world disparities continue to exist, even before algorithmic decisions are made. In this work, we draw on insights from the social sciences brought into the realm of causal modeling and constrained optimization, and develop a novel algorithmic framework for tackling pre-existing real-world disparities. The purpose of our framework, which we call the impact remediation framework, is to measure real-world disparities and discover the optimal intervention policies that could help improve equity or access to opportunity for those who are underserved with respect to an outcome of interest. We develop a disaggregated approach to tackling pre-existing disparities that relaxes the typical set of assumptions required for the use of social categories in structural causal models. Our approach flexibly incorporates counterfactuals and is compatible with various ontological assumptions about the nature of social categories. We demonstrate impact remediation with a hypothetical case study and compare our disaggregated approach to an existing state-of-the-art approach, comparing its structure and resulting policy recommendations. In contrast to most work on optimal policy learning, we explore disparity reduction itself as an objective, explicitly focusing the power of algorithms on reducing inequality.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا