Do you want to publish a course? Click here

The Dynamic Proto-atmospheres around Low-Mass Planets with Eccentric Orbits

130   0   0.0 ( 0 )
 Added by Chuhong Mai
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Protoplanets are able to accrete primordial atmospheres when embedded in the gaseous protoplanetary disk. The formation and structure of the proto-atmosphere are subject to the planet--disk environment and orbital effects. Especially, when planets are on eccentric orbits, their relative velocities to the gas can exceed the sound speed. The planets generate atmosphere-stripping bow shocks. We investigate the proto-atmospheres on low-mass planets with eccentric orbits with radiation-hydrodynamics simulations. A 2D radiative model of the proto-atmosphere is established with tabulated opacities for the gas and dust. The solutions reveal large-scale gas recycling inside a bow shock structure. The atmospheres on eccentric planets are typically three to four orders of magnitude less massive than those of planets with circular orbits. Overall, however, a supersonic environment is favorable for planets to keep an early stable atmosphere, rather than harmful, due to the steady gas supply through the recycling flow. We also quantitatively explore how such atmospheres are affected by the relative velocity of the planet to the gas, the planet mass, and the background gas density. Our time-dependent simulations track the orbital evolution of the proto-atmosphere with the planet--disk parameters changing throughout the orbit. Atmospheric properties show oscillatory patterns as the planet travels on an eccentric orbit, with a lag in phase. To sum up, low-mass eccentric planets can retain small proto-atmospheres despite the stripping effects of bow shocks. The atmospheres are always connected to and interacting with the disk gas. These findings provide important insights into the impacts of migration and scattering on planetary proto-atmospheres.



rate research

Read More

We investigate the properties of the hydrodynamic flow around eccentric protoplanets and compare them with the often assumed case of a circular orbit. To this end, we perform a set of 3D hydrodynamic simulations of protoplanets with small eccentricities ($eleq 0.1$). We adopt an isothermal equation of state and concentrate resolution on the protoplanet to investigate flows down to the scale of the protoplanets circumplanetary disk (CPD). We find enhanced prograde rotation exterior to the CPD for low planet masses undergoing subsonic eccentric motion. If the eccentricity is made large enough to develop a bow shock, this trend reverses and rotation becomes increasingly retrograde. The instantaneous eccentric flow field is dramatically altered compared to circular orbits. Whereas the latter exhibit a generic pattern of polar inflow and midplane outflow, the flow geometry depends on orbital phase in the eccentric case. For even the modest eccentricities tested here, the dominant source of inflow can come from the midplane instead of the poles. We find that the amount of inflow and outflow increases for higher $e$ and lower protoplanet masses, thereby recycling more gas through the planets Bondi radius. These increased fluxes may increase the pebble accretion rate for eccentric planets up to several times that of the circular orbit rate. In response to eccentric motion, the structure and rotation of the planets bound CPD remains unchanged. Because the CPD regulates the eventual accretion of gas onto the planet, we predict little change to the gas accretion rates between eccentric and circular planets.
Protoplanetary disks contain structures such as gaps, rings, and spirals, which are thought to be produced by the interaction between the disk and embedded protoplanets. However, only a few planet candidates are found orbiting within protoplanetary disks, and most of them are being challenged as having been confused with disk features. We aim to discover more proto-planetary candidates with MUSE, with a secondary aim of improving the high-resolution spectral differential imaging (HRSDI) technique by analyzing the instrumental residuals of MUSE. We analyzed MUSE observations of five young stars and applied the HRSDI technique to perform high-contrast imaging. With a 30 min integration time, MUSE can reach 5$sigma$ detection limits in apparent H$alpha$ line flux down to 10$^{-14}$ and 10$^{-15}$ erg s$^{-1}$ cm$^{-2}$ at 0.075 and 0.25, respectively. In addition to PDS 70 b and c, we did not detect any clear accretion signatures in PDS 70, J1850-3147, and V1094 Sco down to 0.1. MUSE avoids the small sample statistics problem by measuring the noise characteristics in the spatial direction at multiple wavelengths. We detected two asymmetric atomic jets in HD 163296. The HRSDI technique when applied to MUSE data allows us to reach the photon noise limit at small separations (i.e., < 0.5). With a higher spectral resolution, MUSE can achieve fainter detection limits in apparent line flux than SPHERE/ZIMPOL by a factor of $sim$5. MUSE has some instrumental issues that limit the contrast that appear in cases with strong point sources, which can be either a spatial point source due to high Strehl observations or a spectral point source due to a high line-to-continuum ratio. We modified the HRSDI technique to better handle the instrumental artifacts and improve the detection limits.
163 - Geoffrey W. Marcy 1999
Doppler measurements of two G-type main-sequence stars, HD210277 and HD168443, reveal Keplerian variations that imply the presence of companions with masses (M sin i) of 1.28 and 5.04 M_Jup and orbital periods of 437 d and 58 d, respectively. The orbits have large eccentricities of e=0.45 and e=0.54, respectively. All 9 known extrasolar planet candidates with a=0.2-2.5 AU have orbital eccentricities greater than 0.1, higher than that of Jupiter (e=0.05). Eccentric orbits may result from gravitational perturbations imposed by other orbiting planets or stars, by passing stars in the dense star-forming cluster, or by the protoplanetary disk. Based on published studies and our near-IR adaptive optics images, HD210277 appears to be a single star. However, HD168443 exhibits a long-term velocity trend consistent with a close stellar companion, as yet undetected directly.
We present optical and near-infrared adaptive optics (AO) imaging and spectroscopy of 13 ultracool (>M6) companions to late-type stars (K7-M4.5), most of which have recently been identified as candidate members of nearby young moving groups (YMGs; 8-120 Myr) in the literature. The inferred masses of the companions (~10-100 Mjup) are highly sensitive to the ages of the primary stars so we critically examine the kinematic and spectroscopic properties of each system to distinguish bona fide YMG members from old field interlopers. 2MASS J02155892-0929121 C is a new M7 substellar companion (40-60 Mjup) with clear spectroscopic signs of low gravity and hence youth. The primary, possibly a member of the ~40 Myr Tuc-Hor moving group, is visually resolved into three components, making it a young low-mass quadruple system in a compact (<100 AU) configuration. In addition, Li 1 $lambda$6708 absorption in the intermediate-gravity M7.5 companion 2MASS J15594729+4403595 B provides unambiguous evidence that it is young (<200 Myr) and resides below the hydrogen burning limit. Three new close-separation (<1) companions (2MASS J06475229-2523304 B, PYC J11519+0731 B, and GJ 4378 Ab) orbit stars previously reported as candidate YMG members, but instead are likely old (>1 Gyr) tidally-locked spectroscopic binaries without convincing kinematic associations with any known moving group. The high rate of false positives in the form of old active stars with YMG-like kinematics underscores the importance of radial velocity and parallax measurements to validate candidate young stars identified via proper motion and activity selection alone. Finally, we spectroscopically confirm the cool temperature and substellar nature of HD 23514 B, a recently discovered M8 benchmark brown dwarf orbiting the dustiest-known member of the Pleiades. [Abridged]
150 - Channon Visscher 2012
Close-in exoplanets with highly eccentric orbits are subject to large variations in incoming stellar flux between periapse and apoapse. These variations may lead to large swings in atmospheric temperature, which in turn may cause changes in the chemistry of the atmosphere from higher CO abundances at periapse to higher CH4 abundances at apoapse. Here we examine chemical timescales for CO<->CH4 interconversion compared to orbital timescales and vertical mixing timescales for the highly eccentric exoplanets HAT-P-2b and CoRoT-10b. As exoplanet atmospheres cool, the chemical timescales for CO<->CH4 tend to exceed orbital and/or vertical mixing timescales, leading to quenching. The relative roles of orbit-induced thermal quenching and vertical quenching depend upon mixing timescales relative to orbital timescales. For both HAT-P-2b and CoRoT-10b, vertical quenching will determine disequilibrium CO<->CH4 chemistry at faster vertical mixing rates (Kzz > 10^7 cm^2 s^-1), whereas orbit-induced thermal quenching may play a significant role at slower mixing rates (Kzz < 10^7 cm^2 s^-1). The general abundance and chemical timescale results - calculated as a function of pressure, temperature, and metallicity - can be applied for different atmospheric profiles in order to estimate the quench level and disequilibrium abundances of CO and CH4 on hydrogen-dominated exoplanets. Observations of CO and CH4 on highly eccentric exoplanets may yield important clues to the chemical and dynamical properties of their atmospheres.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا