Do you want to publish a course? Click here

Stabilizer extent is not multiplicative

62   0   0.0 ( 0 )
 Added by Arne Heimendahl
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Gottesman-Knill theorem states that a Clifford circuit acting on stabilizer states can be simulated efficiently on a classical computer. Recently, this result has been generalized to cover inputs that are close to a coherent superposition of logarithmically many stabilizer states. The runtime of the classical simulation is governed by the stabilizer extent, which roughly measures how many stabilizer states are needed to approximate the state. An important open problem is to decide whether the extent is multiplicative under tensor products. An affirmative answer would yield an efficient algorithm for computing the extent of product inputs, while a negative result implies the existence of more efficient classical algorithms for simulating largescale quantum circuits. Here, we answer this question in the negative. Our result follows from very general properties of the set of stabilizer states, such as having a size that scales subexponentially in the dimension, and can thus be readily adapted to similar constructions for other resource theories.



rate research

Read More

It has recently been shown that the tensor rank can be strictly submultiplicative under the tensor product, where the tensor product of two tensors is a tensor whose order is the sum of the orders of the two factors. The necessary upper bounds were obtained with help of border rank. It was left open whether border rank itself can be strictly submultiplicative. We answer this question in the affirmative. In order to do so, we construct lines in projective space along which the border rank drops multiple times and use this result in conjunction with a previous construction for a tensor rank drop. Our results also imply strict submultiplicativity for cactus rank and border cactus rank.
We prove that there is a unique nonnegative and diagram-preserving quasiprobability representation of the stabilizer subtheory in all odd dimensions, namely Grosss discrete Wigner function. This representation is equivalent to Spekkens epistemically restricted toy theory, which is consequently singled out as the unique noncontextual ontological model for the stabilizer subtheory. Strikingly, the principle of noncontextuality is powerful enough (at least in this setting) to single out one particular classical realist interpretation. Our result explains the practical utility of Grosss representation, e.g. why (in the setting of the stabilizer subtheory) negativity in this particular representation implies generalized contextuality, and hence sheds light on why negativity of this particular representation is a resource for quantum computational speedup. It also allows us to prove that generalized contextuality is a necessary resource for universal quantum computation in the state injection model. In all even dimensions, we prove that there does not exist any nonnegative and diagram-preserving quasiprobability representation of the stabilizer subtheory, and, hence, that the stabilizer subtheory is contextual in all even dimensions. Together, these results constitute a complete characterization of the (non)classicality of all stabilizer subtheories.
195 - Ken Wharton 2012
When we want to predict the future, we compute it from what we know about the present. Specifically, we take a mathematical representation of observed reality, plug it into some dynamical equations, and then map the time-evolved result back to real-world predictions. But while this computational process can tell us what we want to know, we have taken this procedure too literally, implicitly assuming that the universe must compute itself in the same manner. Physical theories that do not follow this computational framework are deemed illogical, right from the start. But this anthropocentric assumption has steered our physical models into an impossible corner, primarily because of quantum phenomena. Meanwhile, we have not been exploring other models in which the universe is not so limited. In fact, some of these alternate models already have a well-established importance, but are thought to be mathematical tricks without physical significance. This essay argues that only by dropping our assumption that the universe is a computer can we fully develop such models, explain quantum phenomena, and understand the workings of our universe. (This essay was awarded third prize in the 2012 FQXi essay contest; a new afterword compares and contrasts this essay with Robert Spekkens first prize entry.)
59 - A M Stewart 2016
It is shown that in semi-classical electrodynamics, which describes how electrically charged particles move according to the laws of quantum mechanics under the influence of a prescribed classical electromagnetic field, only a restricted class of gauge transformations is allowed. This lack of full gauge invariance, in contrast to the situation in classical and quantum electrodynamics which are fully gauge invariant theories, is due to the requirement that the scalar potential in the Hamiltonian of wave mechanics represent a physical potential. Probability amplitudes and energy differences are independent of gauge within this restricted class of gauge transformation.
64 - William Slofstra 2017
We construct a linear system non-local game which can be played perfectly using a limit of finite-dimensional quantum strategies, but which cannot be played perfectly on any finite-dimensional Hilbert space, or even with any tensor-product strategy. In particular, this shows that the set of (tensor-product) quantum correlations is not closed. The constructed non-local game provides another counterexample to the middle Tsirelson problem, with a shorter proof than our previous paper (though at the loss of the universal embedding theorem). We also show that it is undecidable to determine if a linear system game can be played perfectly with a finite-dimensional strategy, or a limit of finite-dimensional quantum strategies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا