The high-multiplicity pp collisions at the Large Hadron Collider energies with various heavy-ion-like signatures have warranted a deeper understanding of the underlying physics and particle production mechanisms. It is a common practice to use experimental data on the hadronic transverse momentum ($p_T$) spectra to extract thermodynamical properties of the system formed in heavy ion and high multiplicity pp collisions. The non-availability of event topology dependent experimental data for pp collisions at $sqrt{s}$ = 13 TeV on the spectra of non-strange and strange hadrons constrains us to use the PYTHIA8 simulated numbers to extract temperature-like parameters to study the event shape and multiplicity dependence of specific heat capacity, conformal symmetry breaking measure (CSBM) and speed of sound. The observables show a clear dependence on event multiplicity and event topology. Thermodynamics of the system is largely governed by the light particles because of their relatively larger abundances. In this regards, a threshold in the particle production, $rm N_{ch} simeq$ (10-20) in the final state multiplicity emerges out from the present study, confirming some of the earlier findings in this direction. As for heavier hadrons with relatively small abundances, a similar threshold is observed for $langle rm N_{ch} rangle simeq$ 40 hinting towards formation of a thermal bath where all the heavier hadrons are in equilibrium.