Do you want to publish a course? Click here

Complex magnetic structure in Ba5Ru3O12 with isolated Ru3O12-trimer

77   0   0.0 ( 0 )
 Added by Tathamay Basu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report detailed magnetic, transport, heat-capacity, and neutron diffraction measurements of Ba5Ru3O12, a compound consisting of isolated Ru3O12 trimers. We show that this system develops long-range antiferromagnetic ordering at 60 K (TN) without structural distortion and metal-insulator-type transition, which is in sharp contrast to other Barium Ruthenate trimer systems such as 9R-BaRuO3 and Ba4Ru3O10. A complex magnetic structure is revealed which is attributable to the magnetic frustration due to competing exchange interactions between Ru ions on different crystallographic sites within the Ru3O12 trimer.



rate research

Read More

The magnetization and specific heat measurements have been performed on single-crystalline Gd_3_Ru_4_Al_12_ with a distorted Kagome lattice structure. This spin system is regarded as an antiferromagnetic triangular lattice of XY like Heisenberg model at low temperatures. The magnetic phase diagrams indicate the existence of frustration and Z_2_ degeneracy. The magnetization and specific heat imply the successive phase transitions with partial disorder and a T-shaped spin structure in the ground state.
102 - Qiang Zhang , Guixin Cao , Feng Ye 2019
The dimensionality of the electronic and magnetic structure of a given material is generally predetermined by its crystal structure. Here, using elastic and inelastic neutron scattering combined with magnetization measurements, we find unusual magnetic behavior in three-dimensional (3D) Ba2CoO4. In spite of isolated CoO4 tetrahedra, the system exhibits a 3D noncollinear antiferromagnetic order in the ground state with an anomalously large Curie-Weiss temperature of 110 K compared to TN = 26 K. More unexpectedly, spin dynamics displays quasi-2D spin wave dispersion with an unusually large spin gap, and 1D magnetoelastic coupling. Our results indicate that Ba2CoO4 is a unique system for exploring the interplay between isolated polyhedra, low-dimensional magnetism, and novel spin states in oxides.
A quantum-mechanical 1/3 magnetization plateau and magnetic long-range order appear in the large-spin (5/2) substance SrMn3P4O14. Magnetization results of SrMn3P4O14 can be explained by the spin-5/2 isolated antiferromagnetic linear trimer with the intra-trimer interaction ($J_1$) value of 4.0 K. In the present study, to confirm the spin system, we performed inelastic neutron scattering (INS) experiments of SrMn3P4O14 powders. We observed plural magnetic excitations. The peak positions are 0.46, 0.68, and 1.02 meV. Constant-Q-scan spectra at several Q values (magnitude of the scattering vector) indicate that the dispersion is weak. The weak dispersion indicates that the excitations are transitions between discrete energy levels. Our INS results are consistent with results expected in the trimer model. We evaluated the J1 value as 0.29 meV (3.4 K) without considering the other interactions.
The trimer resonating valence bond (tRVB) state consisting of an equal-weight superposition of trimer coverings on a square lattice is proposed. A model Hamiltonian of the Rokhsar-Kivelson type for which the tRVB becomes the exact ground state is written. The state is shown to have $9^g$ topological degeneracy on genus g surface and support $Z_3$ vortex excitations. Correlation functions show exponential behavior with a very short correlation length consistent with the gapped spectrum. The classical problem of the degeneracy of trimer configurations is investigated by the transfer matrix method.
Magnetic ordering phenomena have a profound influence on the macroscopic properties of correlated-electron materials, but their realistic prediction remains a formidable challenge. An archetypical example is the ternary nickel oxide system RNiO3 (R = rare earth), where the period-four magnetic order with proposals of collinear and non-collinear structures and the amplitude of magnetic moments on different Ni sublattices have been subjects of debate for decades. Here we introduce an elementary model system - NdNiO3 slabs embedded in a non-magnetic NdGaO3 matrix - and use polarized resonant x-ray scattering (RXS) to show that both collinear and non-collinear magnetic structures can be realized, depending on the slab thickness. The crossover between both spin structures is correctly predicted by density functional theory and can be qualitatively understood in a low-energy spin model. We further demonstrate that the amplitude ratio of magnetic moments in neighboring NiO6 octahedra can be accurately determined by RXS in combination with a correlated double cluster model. Targeted synthesis of model systems with controlled thickness and synergistic application of polarized RXS and ab-initio theory thus provide new perspectives for research on complex magnetism, in analogy to two-dimensional materials created by exfoliation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا