Do you want to publish a course? Click here

Unconventional superconductivity in a strongly correlated band-insulator without doping

231   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a novel route for attaining unconventional superconductivity (SC) in a strongly correlated system without doping. In a simple model of a correlated band insulator (BI) at half-filling we demonstrate, based on a generalization of the projected wavefunctions method, that SC emerges when e-e interactions and the bare band-gap are both much larger than the kinetic energy, provided the system has sufficient frustration against the magnetic order. As the interactions are tuned, SC appears sandwiched between the correlated BI followed by a paramagnetic metal on one side, and a ferrimagnetic metal, antiferromagnetic (AF) half-metal, and AF Mott insulator phases on the other side.



rate research

Read More

We solve by Dynamical Mean Field Theory a toy-model which has a phase diagram strikingly similar to that of high $T_c$ superconductors: a bell-shaped superconducting region adjacent the Mott insulator and a normal phase that evolves from a conventional Fermi liquid to a pseudogapped semi-metal as the Mott transition is approached. Guided by the physics of the impurity model that is self-consistently solved within Dynamical Mean Field Theory, we introduce an analytical ansatz to model the dynamical behavior across the various phases which fits very accurately the numerical data. The ansatz is based on the assumption that the wave-function renormalization, that is very severe especially in the pseudogap phase close to the Mott transition, is perfectly canceled by the vertex corrections in the Cooper pairing channel.A remarkable outcome is that a superconducting state can develop even from a pseudogapped normal state, in which there are no low-energy quasiparticles. The overall physical scenario that emerges, although unraveled in a specific model and in an infinite-coordination Bethe lattice, can be interpreted in terms of so general arguments to suggest that it can be realized in other correlated systems.
We use a Luttinger-Ward functional approach to study the problem of phonon-mediated superconductivity in electron systems with strong electron-electron interactions (EEIs). Our derivation does not rely on an expansion in skeleton diagrams for the EEI and the resulting theory is therefore nonperturbative in the strength of the latter. We show that one of the building blocks of the theory is the irreducible six-leg vertex related to EEIs. Diagrammatically, this implies five contributions (one of the Fock and four of the Hartree type) to the electronic self-energy, which, to the best of our knowledge, have never been discussed in the literature. Our approach is applicable to (and in fact designed to tackle superconductivity in) strongly correlated electron systems described by generic lattice models, as long as the glue for electron pairing is provided by phonons.
A microscopic theory of the electronic spectrum and of superconductivity within the t-J model on the honeycomb lattice is developed. We derive the equations for the normal and anomalous Green functions in terms of the Hubbard operators by applying the projection technique. Superconducting pairing of d + id-type mediated by the antiferromagnetic exchange is found. The superconducting Tc as a function of hole doping exhibits a two-peak structure related to the van Hove singularities of the density of states for the two-band t-J model. At half-filling and for large enough values of the exchange coupling, gapless superconductivity may occur. For small doping the coexistence of antiferromagnetic order and superconductivity is suggested. It is shown that the s-wave pairing is prohibited, since it violates the constraint of no-double-occupancy.
We report point contact measurements in high quality single crystals of Cu0.2Bi2Se3. We observe three different kinds of spectra: (1) Andreev-reflection spectra, from which we infer a superconducting gap size of 0.6mV; (2) spectra with a large gap which closes above Tc at about 10K; and (3) tunneling-like spectra with zero-bias conductance peaks. These tunneling spectra show a very large gap of ~2meV (2Delta/KTc ~ 14).
We present the results of numerical studies of superconductivity and antiferromagnetism in a strongly correlated electron system. To do this we construct a Hubbard model on a lattice of self-consistently embedded multi-site clusters by means of a dynamical mean-field theory in which intra-cluster dynamics is treated essentially exactly. We show that a class of characteristic features which have been seen in the excitation spectra of high-$T_{c}$ cuprates (e.g., pseudogap and the spin-flip resonance), as well as their interplay with the onset of a pairing correlations, can be captured within a dynamical mean-field theory in which short-wavelength dynamics are rigorously treated. Thus we infer that the observation of the neutron scattering resonance in the superconducting state of the cuprate superconductors does not appear to be directly tied to their quasi-2D character. Although our approach is defined strictly in terms of fermion degrees of freedom, we show that we can readily identify the emergence of effective low energy bosonic degrees of freedom in the presence of a well-defined broken symmetry phase as long as their dynamics are dominated by short-range, short-wavelength fluctuations. Our results reveal that the dynamics of staggered spin degrees of freedom builds up coherence and a resonance-like sharp feature emerges as pairing correlations set in. Under conditions of superconducting broken symmetry our approach thus extends static BCS mean field theory to provide an exact treatment of quantum fluctuations of the BCS order parameter.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا