Do you want to publish a course? Click here

Network Embedding with Completely-imbalanced Labels

378   0   0.0 ( 0 )
 Added by Zheng Wang
 Publication date 2020
and research's language is English
 Authors Zheng Wang




Ask ChatGPT about the research

Network embedding, aiming to project a network into a low-dimensional space, is increasingly becoming a focus of network research. Semi-supervised network embedding takes advantage of labeled data, and has shown promising performance. However, existing semi-supervised methods would get unappealing results in the completely-imbalanced label setting where some classes have no labeled nodes at all. To alleviate this, we propose two novel semi-supervised network embedding methods. The first one is a shallow method named RSDNE. Specifically, to benefit from the completely-imbalanced labels, RSDNE guarantees both intra-class similarity and inter-class dissimilarity in an approximate way. The other method is RECT which is a new class of graph neural networks. Different from RSDNE, to benefit from the completely-imbalanced labels, RECT explores the class-semantic knowledge. This enables RECT to handle networks with node features and multi-label setting. Experimental results on several real-world datasets demonstrate the superiority of the proposed methods.



rate research

Read More

71 - Yuanfu Lu , Xiao Wang , Chuan Shi 2019
Network embedding aims to embed nodes into a low-dimensional space, while capturing the network structures and properties. Although quite a few promising network embedding methods have been proposed, most of them focus on static networks. In fact, temporal networks, which usually evolve over time in terms of microscopic and macroscopic dynamics, are ubiquitous. The micro-dynamics describe the formation process of network structures in a detailed manner, while the macro-dynamics refer to the evolution pattern of the network scale. Both micro- and macro-dynamics are the key factors to network evolution; however, how to elegantly capture both of them for temporal network embedding, especially macro-dynamics, has not yet been well studied. In this paper, we propose a novel temporal network embedding method with micro- and macro-dynamics, named $rm{M^2DNE}$. Specifically, for micro-dynamics, we regard the establishments of edges as the occurrences of chronological events and propose a temporal attention point process to capture the formation process of network structures in a fine-grained manner. For macro-dynamics, we define a general dynamics equation parameterized with network embeddings to capture the inherent evolution pattern and impose constraints in a higher structural level on network embeddings. Mutual evolutions of micro- and macro-dynamics in a temporal network alternately affect the process of learning node embeddings. Extensive experiments on three real-world temporal networks demonstrate that $rm{M^2DNE}$ significantly outperforms the state-of-the-arts not only in traditional tasks, e.g., network reconstruction, but also in temporal tendency-related tasks, e.g., scale prediction.
122 - Hao Peng , Jianxin Li , Hao Yan 2019
Network representation learning, as an approach to learn low dimensional representations of vertices, has attracted considerable research attention recently. It has been proven extremely useful in many machine learning tasks over large graph. Most existing methods focus on learning the structural representations of vertices in a static network, but cannot guarantee an accurate and efficient embedding in a dynamic network scenario. To address this issue, we present an efficient incremental skip-gram algorithm with negative sampling for dynamic network embedding, and provide a set of theoretical analyses to characterize the performance guarantee. Specifically, we first partition a dynamic network into the updated, including addition/deletion of links and vertices, and the retained networks over time. Then we factorize the objective function of network embedding into the added, vanished and retained parts of the network. Next we provide a new stochastic gradient-based method, guided by the partitions of the network, to update the nodes and the parameter vectors. The proposed algorithm is proven to yield an objective function value with a bounded difference to that of the original objective function. Experimental results show that our proposal can significantly reduce the training time while preserving the comparable performance. We also demonstrate the correctness of the theoretical analysis and the practical usefulness of the dynamic network embedding. We perform extensive experiments on multiple real-world large network datasets over multi-label classification and link prediction tasks to evaluate the effectiveness and efficiency of the proposed framework, and up to 22 times speedup has been achieved.
Learning accurate low-dimensional embeddings for a network is a crucial task as it facilitates many downstream network analytics tasks. For large networks, the trained embeddings often require a significant amount of space to store, making storage and processing a challenge. Building on our previous work on semi-supervised network embedding, we develop d-SNEQ, a differentiable DNN-based quantisation method for network embedding. d-SNEQ incorporates a rank loss to equip the learned quantisation codes with rich high-order information and is able to substantially compress the size of trained embeddings, thus reducing storage footprint and accelerating retrieval speed. We also propose a new evaluation metric, path prediction, to fairly and more directly evaluate model performance on the preservation of high-order information. Our evaluation on four real-world networks of diverse characteristics shows that d-SNEQ outperforms a number of state-of-the-art embedding methods in link prediction, path prediction, node classification, and node recommendation while being far more space- and time-efficient.
A bipartite network is a graph structure where nodes are from two distinct domains and only inter-domain interactions exist as edges. A large number of network embedding methods exist to learn vectorial node representations from general graphs with both homogeneous and heterogeneous node and edge types, including some that can specifically model the distinct properties of bipartite networks. However, these methods are inadequate to model multiplex bipartite networks (e.g., in e-commerce), that have multiple types of interactions (e.g., click, inquiry, and buy) and node attributes. Most real-world multiplex bipartite networks are also sparse and have imbalanced node distributions that are challenging to model. In this paper, we develop an unsupervised Dual HyperGraph Convolutional Network (DualHGCN) model that scalably transforms the multiplex bipartite network into two sets of homogeneous hypergraphs and uses spectral hypergraph convolutional operators, along with intra- and inter-message passing strategies to promote information exchange within and across domains, to learn effective node embedding. We benchmark DualHGCN using four real-world datasets on link prediction and node classification tasks. Our extensive experiments demonstrate that DualHGCN significantly outperforms state-of-the-art methods, and is robust to varying sparsity levels and imbalanced node distributions.
73 - Xinyi Zhang , Lihui Chen 2021
Heterogeneous information networks(HINs) become popular in recent years for its strong capability of modelling objects with abundant information using explicit network structure. Network embedding has been proved as an effective method to convert information networks into lower-dimensional space, whereas the core information can be well preserved. However, traditional network embedding algorithms are sub-optimal in capturing rich while potentially incompatible semantics provided by HINs. To address this issue, a novel meta-path-based HIN representation learning framework named mSHINE is designed to simultaneously learn multiple node representations for different meta-paths. More specifically, one representation learning module inspired by the RNN structure is developed and multiple node representations can be learned simultaneously, where each representation is associated with one respective meta-path. By measuring the relevance between nodes with the designed objective function, the learned module can be applied in downstream link prediction tasks. A set of criteria for selecting initial meta-paths is proposed as the other module in mSHINE which is important to reduce the optimal meta-path selection cost when no prior knowledge of suitable meta-paths is available. To corroborate the effectiveness of mSHINE, extensive experimental studies including node classification and link prediction are conducted on five real-world datasets. The results demonstrate that mSHINE outperforms other state-of-the-art HIN embedding methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا