Do you want to publish a course? Click here

Material systems for FM-/AFM-coupled skyrmions in Co/Pt-based multilayers

93   0   0.0 ( 0 )
 Added by Hongying Jia
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

By means of systematic first-principles calculations based on density functional theory we search for suitable materials that can host antiferromagnetically coupled skyrmions. We concentrate on fcc-stacked (111)-oriented metallic $Z$/Co/Pt ($Z=4d$ series: Y$-$Pd, the noble metals: Cu, Ag, Au, post noble metals: Zn and Cd) magnetic multilayers of films of monatomic thickness. We present quantitative trends of magnetic properties: Magnetic moments, interlayer exchange coupling, spin-stiffness, Dzyaloshinskii-Moriya interaction, magnetic anisotropy, and the critical temperature. We show that some of the $Z$ elements (Zn, Y, Zr, Nb, Tc, Ru, Rh, and Cd) can induce antiferromagnetic interlayer coupling between the magnetic Co layers, and that they influence the easy magnetization axis. Employing a multiscale approach, we transfer the micromagnetic parameters determined from $ab$ $initio$ to a micromagnetic energy functional and search for one-dimensional spin-spiral solutions and two-dimensional skyrmions. We determine the skyrmion radius by numerically solving the equation of the skyrmion profile. We found an analytical expression for the skyrmion radius that covers our numerical results and is valid for a large regime of micromagnetic parameters. Based on this expression we have proposed a model that allows to extrapolate from the $ab$ $initio$ results of monatomic films to multilayers with Co films consisting of several atomic layers containing $10,$nm skyrmions. We found thickness regimes where tiny changes of the film thickness may alter the skyrmion radius by orders of magnitude. We estimated the skyrmion size as function of temperature and found that the size can easily double going from cryogenic to room temperature. We suggest promising material systems for ferromagnetically and antiferromagnetically coupled spin-spiral and skyrmion systems.



rate research

Read More

Magnetic skyrmions are nanoscale topological spin structures offering great promise for next-generation information storage technologies. The recent discovery of sub-100 nm room temperature (RT) skyrmions in several multilayer films has triggered vigorous efforts to modulate their physical properties for their use in devices. Here we present a tunable RT skyrmion platform based on multilayer stacks of Ir/Fe/Co/Pt, which we study using X-ray microscopy, magnetic force microscopy and Hall transport techniques. By varying the ferromagnetic layer composition, we can tailor the magnetic interactions governing skyrmion properties, thereby tuning their thermodynamic stability parameter by an order of magnitude. The skyrmions exhibit a smooth crossover between isolated (metastable) and disordered lattice configurations across samples, while their size and density can be tuned by factors of 2 and 10 respectively. We thus establish a platform for investigating functional sub-50 nm RT skyrmions, pointing towards the development of skyrmion-based memory devices.
We have studied the magnetic properties of multilayers composed of ferromagnetic metal Co and heavy metals with strong spin orbit coupling (Pt and Ir). Multilayers with symmetric (ABA stacking) and asymmetric (ABC stacking) structures are grown to study the effect of broken structural inversion symmetry. We compare the perpendicular magnetic anisotropy (PMA) energy of symmetric Pt/Co/Pt, Ir/Co/Ir multilayers and asymmetric Pt/Co/Ir, Ir/Co/Pt multilayers. First, the interface contribution to the PMA is studied using the Co layer thickness dependence of the effective PMA energy. Comparison of the interfacial PMA between the Ir/Co/Pt, Pt/Co/Ir asymmetric structures and Pt/Co/Pt, Ir/Co/Ir symmetric structures indicate that the broken structural inversion symmetry induced PMA is small compared to the overall interfacial PMA. Second, we find the magnetic anisotropy field is significantly increased in multilayers when the ferromagnetic layers are antiferromagnetically coupled via interlayer exchange coupling (IEC). Macrospin model calculations can qualitatively account for the relation between the anisotropy field and the IEC. Among the structures studied, IEC is the largest for the asymmetric Ir/Co/Pt multilayers: the exchange coupling field exceeds 3 T and consequently, the anisotropy field approaches 10 T. Third, comparing the asymmetric Ir/Co/Pt and Pt/Co/Ir structures, we find the IEC and, to some extent, the interface PMA are stronger for the former than the latter. X-ray magnetic circular dichroism studies suggest that the proximity induced magnetization in Pt is larger for the Ir/Co/Pt multilayers than the inverted structure, which may partly account for the difference in the magnetic properties. These results show the intricate relation between PMA, IEC and the proximity induced magnetization that can be exploited to design artificial structures with unique magnetic characteristics.
Magnetic skyrmions are nanoscale spin structures recently discovered at room temperature (RT) in multilayer films. Employing their novel topological properties towards exciting technological prospects requires a mechanistic understanding of the excitation and relaxation mechanisms governing their stability and dynamics. Here we report on the magnetization dynamics of RT Neel skyrmions in Ir/Fe/Co/Pt multilayer films. We observe a ubiquitous excitation mode in the microwave absorption spectrum, arising from the gyrotropic resonance of topological skyrmions, and robust over a wide range of temperatures and sample compositions. A combination of simulations and analytical calculations establish that the spectrum is shaped by the interplay of interlayer and interfacial magnetic interactions unique to multilayers, yielding skyrmion resonances strongly renormalized to lower frequencies. Our work provides fundamental spectroscopic insights on the spatiotemporal dynamics of topological spin structures, and crucial directions towards their functionalization in nanoscale devices.
Using broadband ferromagnetic resonance, we measure the damping parameter of [Co(5 r{A})/Pt(3 r{A})]${times 6}$ multilayers whose growth was optimized to maximize the perpendicular anisotropy. Structural characterizations indicate abrupt interfaces essentially free of intermixing despite the miscible character of Co and Pt. Gilbert damping parameters as low as 0.021 can be obtained despite a magneto-crystalline anisotropy as large as $10^6~textrm{J/m}^3$. The inhomogeneous broadening accounts for part of the ferromagnetic resonance linewidth, indicating some structural disorder leading to a equivalent 20 mT of inhomogenity of the effective field. The unexpectedly relatively low damping factor indicates that the presence of the Pt heavy metal within the multilayer may not be detrimental to the damping provided that intermixing is avoided at the Co/Pt interfaces.
The magnetic properties of (111)-oriented Rh/Co/Pt and Pd/Co/Pt multilayers are investigated by first-principles calculations. We focus on the interlayer exchange coupling, and identify thicknesses and composition where a typical ferromagnet or a synthetic antiferromagnet across the spacer layer is formed. All systems under investigation show a collinear magnetic intralayer order, but the Dzyaloshinskii-Moriya interaction (DMI) is rather strong for Pd-based systems, so that single magnetic skyrmions can be expected. In general, we find a strong sensitivity of the magnetic parameters (especially the DMI) in Rh-based systems, but Pd-based multilayers are less sensitive to structural details.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا