Do you want to publish a course? Click here

Combing the helical phase of chiral magnets with electric currents

63   0   0.0 ( 0 )
 Added by Jan Masell
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The competition between the ferromagnetic exchange interaction and anti-symmetric Dzyaloshinskii-Moriya interaction can stabilize a helical phase or support the formation of skyrmions. In thin films of chiral magnets, the current density can be large enough to unpin the helical phase and reveal its nontrivial dynamics. We theoretically study the dynamics of the helical phase under spin-transfer torques that reveal distinct orientation processes, driven by topological defects in the bulk or induced by edges, limited by instabilities at higher currents. Our experiments confirm the possibility of on-demand switching the helical orientation by current pulses. This helical orientation might serve as a novel order parameter in future spintronics applications.



rate research

Read More

We study the quantum propagation of a Skyrmion in chiral magnetic insulators by generalizing the micromagnetic equations of motion to a finite-temperature path integral formalism, using field theoretic tools. Promoting the center of the Skyrmion to a dynamic quantity, the fluctuations around the Skyrmionic configuration give rise to a time-dependent damping of the Skyrmion motion. From the frequency dependence of the damping kernel, we are able to identify the Skyrmion mass, thus providing a microscopic description of the kinematic properties of Skyrmions. When defects are present or a magnetic trap is applied, the Skyrmion mass acquires a finite value proportional to the effective spin, even at vanishingly small temperature. We demonstrate that a Skyrmion in a confined geometry provided by a magnetic trap behaves as a massive particle owing to its quasi-one-dimensional confinement. An additional quantum mass term is predicted, independent of the effective spin, with an explicit temperature dependence which remains finite even at zero temperature.
In chiral magnets a magnetic helix forms where the magnetization winds around a propagation vector $mathbf{q}$. We show theoretically that a magnetic field $mathbf{B}_{perp}(t) perp mathbf{q}$, which is spatially homogeneous but oscillating in time, induces a net rotation of the texture around $mathbf{q}$. This rotation is reminiscent of the motion of an Archimedean screw and is equivalent to a translation with velocity $v_{text{screw}}$ parallel to $mathbf{q}$. Due to the coupling to a Goldstone mode, this non-linear effect arises for arbitrarily weak $mathbf{B}_{perp}(t) $ with $v_{text{screw}} propto |mathbf{B}_{perp}|^2$ as long as pinning by disorder is absent. The effect is resonantly enhanced when internal modes of the helix are excited and the sign of $v_{text{screw}}$ can be controlled either by changing the frequency or the polarization of $mathbf{B}_{perp}(t)$. The Archimedean screw can be used to transport spin and charge and thus the screwing motion is predicted to induce a voltage parallel to $mathbf{q}$. Using a combination of numerics and Floquet spin wave theory, we show that the helix becomes unstable upon increasing $mathbf{B}_{perp}$ forming a `time quasicrystal which oscillates in space and time for moderately strong drive.
We determine exactly the phase structure of a chiral magnet in one spatial dimension with the Dzyaloshinskii-Moriya (DM) interaction and a potential that is a function of the third component of the magnetization vector, $n_3$, with a Zeeman (linear with the coefficient $B$) term and an anisotropy (quadratic with the coefficient $A$) term. For large values of potential parameters $A$ and $B$, the system is in one of the ferromagnetic phases, whereas it is in the spiral phase for small values. In the spiral phase we find a continuum of spiral solutions, which are one-dimensionally modulated solutions with various periods. The ground state is determined as the spiral solution with the lowest average energy density. As the phase boundary approaches, the period of the lowest energy spiral solution diverges, and the spiral solutions become domain wall solutions with zero energy at the boundary. The energy of then domain wall solutions is positive in the homogeneous phase region, but is negative in the spiral phase region, signaling the instability of the homogeneous (ferromagnetic) state. The order of the phase transition between spiral and homogeneous phases and between polarized ($n_3=pm 1$) and canted ($n_3 ot=pm 1$) ferromagnetic phases is found to be second order.
We exhaustively construct instanton solutions and elucidate their properties in one-dimensional anti-ferromagnetic chiral magnets based on the $O(3)$ nonlinear sigma model description of spin chains with the Dzyaloshinskii-Moriya (DM) interaction. By introducing an easy-axis potential and a staggered magnetic field, we obtain a phase diagram consisting of ground-state phases with two points (or one point) in the easy-axis dominant cases, a helical modulation at a fixed latitude of the sphere, and a tricritical point allowing helical modulations at an arbitrary latitude. We find that instantons (or skyrmions in two-dimensional Euclidean space) appear as composite solitons in different fashions in these phases: temporal domain walls or wall-antiwall pairs (bions) in the easy-axis dominant cases, dislocations (or phase slips) with fractional instanton numbers in the helical state, and isolated instantons and calorons living on the top of the helical modulation at the tricritical point. We also show that the models with DM interaction and an easy-plane potential can be mapped into those without them, providing a useful tool to investigate the model with the DM interaction.
We have observed a metal-insulator transition of a quasi-two dimensional electronic system in transition metal dichalcogenide $2H$-TaSe$_2$ caused by doping iron. The sheet resistance of $2H$-Fe$_x$TaSe$_2$ ($0 leq x leq 0.120$) single crystals rises about $10^6$ times with the increasing of $x$ at the lowest temperature. We investigated the temperature dependence of the resistance and found a metal-insulator transition with a critical sheet resistance $11.7 pm 5.4$ k$rm{Omega}$. The critical exponent of the localization length $ u$ is estimated $0.31 pm 0.18$. The values of the critical sheet resistance and $ u$ are accordant to those of the textit{chiral unitary class} (less than $h/1.49e^2=17.3$ k$rm{Omega}$ and $0.35 pm 0.03$, respectively). We suggest that $2H$-Fe$_x$TaSe$_2$ is classified as the chiral unitary class, not as standard unitary class.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا