Do you want to publish a course? Click here

Novel shadows from the asymmetric thin-shell wormhole

170   0   0.0 ( 0 )
 Added by Minyong Guo
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

For dark compact objects such as black holes or wormholes, the shadow size has long been thought to be determined by the unstable photon sphere (region). However, by considering the asymmetric thin-shell wormhole (ATSW) model, we find that the impact parameter of the null geodesics is discontinuous through the wormhole in general and hence we identify novel shadows whose sizes are dependent of the photon sphere in the other side of the spacetime. The novel shadows appear in three cases: (A2) The observers spacetime contains a photon sphere and the mass parameter is smaller than that of the opposite side; (B1, B2) there s no photon sphere no matter which mass parameter is bigger. In particular, comparing with the black hole, the wormhole shadow size is always smaller and their difference is significant in most cases, which provides a potential way to observe wormholes directly through Event Horizon Telescope with better detection capability in the future.



rate research

Read More

We construct the thin-shell wormhole solutions of novel four-dimensional Einstein-Gauss-Bonnet model and study their stability under radial linear perturbations. For positive Gauss-Bonnet coupling constant, the stable thin-shell wormhole can only be supported by exotic matter. For negative enough Gauss-Bonnet coupling constant, in asymptotic flat and AdS spacetime, there exists stable neutral thin-shell wormhole with normal matter which has finite throat radius. In asymptotic dS spacetime, there is no stable neutral thin-shell wormhole with normal matter. The charged thin-shell wormholes with normal matter exist in both flat, AdS and dS spacetime. Their throat radius can be arbitrarily small. However, when the charge is too large, the stable thin-shell wormhole can be supported only by exotic matter.
The problem of bending and scattering of light rays passing outside from the entrance to a wormhole with zero gravitational mass is considered. The process of ray capture by a wormhole as well as the process of formation of a shadow when illuminated by a standard screen is investigated. These mechanisms are also compared to the case of motion of light rays in the vicinity of the Schwarzschild black hole.
We analytically explore the effect of falling matter on a spherically symmetric wormhole supported by a spherical shell composed of exotic matter located at its throat. The falling matter is assumed to be also a thin spherical shell concentric with the shell supporting the wormhole, and its self-gravity is completely taken into account. We treat these spherical thin shells by Israels formalism of metric junction. When the falling spherical shell goes through the wormhole, it necessarily collides with the shell supporting the wormhole. To treat this collision, we assume the interaction between these shells is only gravity. We show the conditions on the parameters that characterize this model in which the wormhole persists after the spherical shell goes through it.
We discuss construction and observational properties of wormholes obtained by connecting two Reissner-Nordstrom spacetimes with distinct mass and charge parameters. These objects are spherically symmetric, but not reflection-symmetric, as the connected spacetimes differ. The reflection-asymmetric wormholes may reflect a significant fraction of the infalling radiation back to the spacetime of its origin. We interpret this effect in a simple framework of the effective photon potential. Depending on the model parameters, image of such a wormhole seen by a distant observer (its shadow) may contain a photon ring formed on the observers side, photon ring formed on the other side of the wormhole, or both photon rings. These unique topological features would allow us to firmly distinguish this class of objects from Kerr black holes using radioastronomical observations.
The general parametrization for spacetimes of spherically symmetric Lorentzian, traversable wormholes in an arbitrary metric theory of gravity is presented. The parametrization is similar in spirit to the post-Newtonian parametrized formalism, but with validity that extends beyond the weak field region and covers the whole space. Our method is based on a continued-fraction expansion in terms of a compactified radial coordinate. Calculations of shadows and quasinormal modes for various examples of parametrization of known wormhole metrics that we have performed show that, for most cases, the parametrization provides excellent accuracy already at the first order. Therefore, only a few parameters are dominant and important for finding potentially observable quantities in a wormhole background. We have also extended the analysis to the regime of slow rotation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا