An optimised tiling pattern for multi-object spectroscopic surveys: application to the 4MOST survey


Abstract in English

Large multi-object spectroscopic surveys require automated algorithms to optimise their observing strategy. One of the most ambitious upcoming spectroscopic surveys is the 4MOST survey. The 4MOST survey facility is a fibre-fed spectroscopic instrument on the VISTA telescope with a large enough field of view to survey a large fraction of the southern sky within a few years. Several Galactic and extragalactic surveys will be carried out simultaneously, so the combined target density will strongly vary. In this paper, we describe a new tiling algorithm that can naturally deal with the large target density variations on the sky and which automatically handles the different exposure times of targets. The tiling pattern is modelled as a marked point process, which is characterised by a probability density that integrates the requirements imposed by the 4MOST survey. The optimal tilling pattern with respect to the defined model is estimated by the tiles configuration that maximises the proposed probability density. In order to achieve this maximisation a simulated annealing algorithm is implemented. The algorithm automatically finds an optimal tiling pattern and assigns a tentative sky brightness condition and exposure time for each tile, while minimising the total execution time that is needed to observe the list of targets in the combined input catalogue of all surveys. Hence, the algorithm maximises the long-term observing efficiency and provides an optimal tiling solution for the survey. While designed for the 4MOST survey, the algorithm is flexible and can with simple modifications be applied to any other multi-object spectroscopic survey.

Download