No Arabic abstract
We show how state-dependent optical potentials can be used to trap a pair of molecules in different internal states at a separation much smaller than the wavelength of the trapping light. This close spacing greatly enhances the dipole-dipole interaction and we show how it can be used to implement two-qubit gates between molecules that are 100 times faster than existing protocols and than rotational coherence times already demonstrated. We analyze complications due to hyperfine structure, tensor light shifts, photon scattering and collisional loss, and conclude that none is a barrier to implementing the scheme.
State-dependent optical tweezers can be used to trap a pair of molecules with a separation much smaller than the wavelength of the trapping light, greatly enhancing the dipole-dipole interaction between them. Here we describe a general approach to producing these state-dependent potentials using the tensor part of the ac Stark shift and show how it can be used to carry out two-qubit gates between pairs of molecules. The method is applicable to broad classes of molecules including bialkali molecules produced by atom association and those amenable to direct laser cooling.
Sideband cooling is a popular method for cooling atoms to the ground state of an optical trap. Applying the same method to molecules requires a number of challenges to be overcome. Strong tensor Stark shifts in molecules cause the optical trapping potential, and corresponding trap frequency, to depend strongly on rotational, hyperfine and Zeeman state. Consequently, transition frequencies depend on the motional quantum number and there are additional heating mechanisms, either of which can be fatal for an effective sideband cooling scheme. We develop the theory of sideband cooling in state-dependent potentials, and derive an expression for the heating due to photon scattering. We calculate the ac Stark shifts of molecular states in the presence of a magnetic field, and for any polarization. We show that the complexity of sideband cooling can be greatly reduced by applying a large magnetic field to eliminate electron- and nuclear-spin degrees of freedom from the problem. We consider how large the magnetic field needs to be, show that heating can be managed sufficiently well, and present a simple recipe for cooling to the ground state of motion.
The multichannel Na-Cs interactions are characterized by a series of measurements using two atoms in an optical tweezer, along with a multichannel quantum defect theory (MQDT). The triplet and singlet scattering lengths are measured by performing Raman spectroscopy of the Na-Cs motional states and least-bound molecular state in the tweezer. Magnetic Feshbach resonances are observed for only two atoms at fields which agree well with the MQDT. Our methodology, which promotes the idea of an effective theory of interaction, can be a key step towards the understanding and the description of more complex interactions. The tweezer-based measurements in particular will be an important tool for atom-molecule and molecule-molecule interactions, where high densities are experimentally challenging and where the interactions can be dominated by intra-species processes.
We theoretically study collisions between ultracold polar molecules that are polarized by microwave or static electric fields. We systematically study the dependence on field strength, microwave polarization, and detuning from rotational transitions. We calculate the loss in two-body collisions that is observable experimentally and compare to the results expected for purely first-order dipolar interactions. For ground state molecules polarized by a static electric field, the dynamics are accurately described by first-order dipolar interactions. For microwave dressing, instead, resonant dipolar collisions dominate the collision process, in which molecules reorient along the intermolecular axis and interact with the full strength of the transition dipole. For red detuning, reorientation can only be suppressed at extreme Rabi frequencies. For blue detuned microwaves, resonant dipolar interactions dominate even for high Rabi frequencies, leading to microwave shielding for circular polarization and structured losses due to resonances for linear polarization. The results are presented numerically for fermionic $^{23}$Na$^{40}$K and bosonic $^{23}$Na$^{39}$K molecules.
We have calculated the isotropic $C_6$ coefficients characterizing the long-range van der Waals interaction between two identical heteronuclear alkali-metal diatomic molecules in the same arbitrary vibrational level of their ground electronic state $X^1Sigma^+$. We consider the ten species made up of $^7$Li, $^{23}$Na, $^{39}$K, $^{87}$Rb and $^{133}$Cs. Following our previous work [M.~Lepers textit{et.~al.}, Phys.~Rev.~A textbf{88}, 032709 (2013)] we use the sum-over-state formula inherent to the second-order perturbation theory, composed of the contributions from the transitions within the ground state levels, from the transition between ground-state and excited state levels, and from a crossed term. These calculations involve a combination of experimental and quantum-chemical data for potential energy curves and transition dipole moments. We also investigate the case where the two molecules are in different vibrational levels and we show that the Moelwyn-Hughes approximation is valid provided that it is applied for each of the three contributions to the sum-over-state formula. Our results are particularly relevant in the context of inelastic and reactive collisions between ultracold bialkali molecules, in deeply bound or in Feshbach levels.