Do you want to publish a course? Click here

The benefits of peer transparency in safe workplace operation post pandemic lockdown

47   0   0.0 ( 0 )
 Added by Alan R. Champneys
 Publication date 2020
  fields Biology
and research's language is English




Ask ChatGPT about the research

The benefits, both in terms of productivity and public health, are investigated for different levels of engagement with the test, trace and isolate procedures in the context of a pandemic in which there is little or no herd immunity. Simple mathematical modelling is used in the context of a single, relatively closed workplace such as a factory or back-office where, in normal operation, each worker has lengthy interactions with a fixed set of colleagues. A discrete-time SEIR model on a fixed interaction graph is simulated with parameters that are motivated by the recent COVID-19 pandemic in the UK during a post-peak phase, including a small risk of viral infection from outside the working environment. Two kinds of worker are assumed, transparents who regularly test, share their results with colleagues and isolate as soon as a contact tests positive for the disease, and opaques who do none of these. Moreover, the simulations are constructed as a ``playable model in which the transparency level, disease parameters and mean interaction degree can be varied by the user. The model is analysed in the continuum limit. All simulations point to the double benefit of transparency in maximising productivity and minimising overall infection rates. Based on these findings, public policy implications are discussed on how to incentivise this mutually beneficial behaviour in different kinds of workplace, and simple recommendations are made.



rate research

Read More

COVID-19--a viral infectious disease--has quickly emerged as a global pandemic infecting millions of people with a significant number of deaths across the globe. The symptoms of this disease vary widely. Depending on the symptoms an infected person is broadly classified into two categories namely, asymptomatic and symptomatic. Asymptomatic individuals display mild or no symptoms but continue to transmit the infection to otherwise healthy individuals. This particular aspect of asymptomatic infection poses a major obstacle in managing and controlling the transmission of the infectious disease. In this paper, we attempt to mathematically model the spread of COVID-19 in India under various intervention strategies. We consider SEIR type epidemiological models, incorporated with India specific social contact matrix representing contact structures among different age groups of the population. Impact of various factors such as presence of asymptotic individuals, lockdown strategies, social distancing practices, quarantine, and hospitalization on the disease transmission is extensively studied. Numerical simulation of our model is matched with the real COVID-19 data of India till May 15, 2020 for the purpose of estimating the model parameters. Our model with zone-wise lockdown is seen to give a decent prediction for July 20, 2020.
The nation-wide lockdown starting 25 March 2020, aimed at suppressing the spread of the COVID-19 disease, was extended until 31 May 2020 in three subsequent orders by the Government of India. The extended lockdown has had significant social and economic consequences and `lockdown fatigue has likely set in. Phased reopening began from 01 June 2020 onwards. Mumbai, one of the most crowded cities in the world, has witnessed both the largest number of cases and deaths among all the cities in India (41986 positive cases and 1368 deaths as of 02 June 2020). Many tough decisions are going to be made on re-opening in the next few days. In an earlier IISc-TIFR Report, we presented an agent-based city-scale simulator(ABCS) to model the progression and spread of the infection in large metropolises like Mumbai and Bengaluru. As discussed in IISc-TIFR Report 1, ABCS is a useful tool to model interactions of city residents at an individual level and to capture the impact of non-pharmaceutical interventions on the infection spread. In this report we focus on Mumbai. Using our simulator, we consider some plausible scenarios for phased emergence of Mumbai from the lockdown, 01 June 2020 onwards. These include phased and gradual opening of the industry, partial opening of public transportation (modelling of infection spread in suburban trains), impact of containment zones on controlling infections, and the role of compliance with respect to various intervention measures including use of masks, case isolation, home quarantine, etc. The main takeaway of our simulation results is that a phased opening of workplaces, say at a conservative attendance level of 20 to 33%, is a good way to restart economic activity while ensuring that the citys medical care capacity remains adequate to handle the possible rise in the number of COVID-19 patients in June and July.
We consider here an extended SIR model, including several features of the recent COVID-19 outbreak: in particular the infected and recovered individuals can either be detected (+) or undetected (-) and we also integrate an intensive care unit (ICU) capacity. Our model enables a tractable quantitative analysis of the optimal policy for the control of the epidemic dynamics using both lockdown and detection intervention levers. With parametric specification based on literature on COVID-19, we investigate the sensitivities of various quantities on the optimal strategies, taking into account the subtle trade-off between the sanitary and the socio-economic cost of the pandemic, together with the limited capacity level of ICU. We identify the optimal lockdown policy as an intervention structured in 4 successive phases: First a quick and strong lockdown intervention to stop the exponential growth of the contagion; second a short transition phase to reduce the prevalence of the virus; third a long period with full ICU capacity and stable virus prevalence; finally a return to normal social interactions with disappearance of the virus. The optimal scenario hereby avoids the second wave of infection, provided the lockdown is released sufficiently slowly. We also provide optimal intervention measures with increasing ICU capacity, as well as optimization over the effort on detection of infectious and immune individuals. Whenever massive resources are introduced to detect infected individuals, the pressure on social distancing can be released, whereas the impact of detection of immune individuals reveals to be more moderate.
We develop an agent-based model of disease transmission in remote communities in Western Australia. Despite extreme isolation, we show that the movement of people amongst a large number of small but isolated communities has the effect of causing transmission to spread quickly. Significant movement between remote communities, and regional and urban centres allows for infection to quickly spread to and then among these remote communities. Our conclusions are based on two characteristic features of remote communities in Western Australia: (1) high mobility of people amongst these communities, and (2) relatively high proportion of travellers from very small communities to major population centres. In models of infection initiated in the state capital, Perth, these remote communities are collectively and uniquely vulnerable. Our model and analysis does not account for possibly heightened impact due to preexisting conditions, such additional assumptions would only make the projections of this model more dire. We advocate stringent monitoring and control of movement to prevent significant impact on the indigenous population of Western Australia.
In this paper, we introduce a novel modeling framework for incorporating fear of infection and frustration with social distancing into disease dynamics. We show that the resulting SEIR behavior-perception model has three principal modes of qualitative behavior---no outbreak, controlled outbreak, and uncontrolled outbreak. We also demonstrate that the model can produce transient and sustained waves of infection consistent with secondary outbreaks. We fit the model to cumulative COVID-19 case and mortality data from several regions. Our analysis suggests that regions which experience a significant decline after the first wave of infection, such as Canada and Israel, are more likely to contain secondary waves of infection, whereas regions which only achieve moderate success in mitigating the diseases spread initially, such as the United States, are likely to experience substantial secondary waves or uncontrolled outbreaks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا