No Arabic abstract
We present the results of an X-ray spectral analysis of the northeast region of the candidate supernova remnant G189.6+3.3 with Suzaku. K-shell lines from highly ionized Ne, Mg, Si, and S were detected in the spectrum for the first time. In addition, a radiative recombining continuum (RRC) from He-like Si was clearly seen near 2.5 keV. This detection of an RRC reveals for the first time that G189.6+3.3 possesses an X-ray-emitting recombining plasma (RP). The extracted X-ray spectrum in the 0.6-10.0 keV energy band is well fitted with a model consisting of a collisional ionization equilibrium plasma component (associated with the interstellar medium) and an RP component (associated with the ejecta). The spectral feature shows that G189.6+3.3 is most likely to be a middle-aged SNR with an RP.
Recent X-ray study of middle-aged supernova remnants (SNRs) reveals strong radiative recombination continua (RRCs) associated with overionized plasmas, of which the origin still remains uncertain. We report our discovery of an RRC in the middle-aged SNR 3C 391. If the X-ray spectrum is fitted with a two-temperature plasma model in collisional ionization equilibrium (CIE), residuals of Si XIV Ly alpha line at 2.006 keV, S XVI Ly alpha line at 2.623 keV and the edge of RRC of Si XIII at 2.666 keV are found. The X-ray spectrum is better described by a composite model consisting of a CIE plasma and a recombining plasma (RP). The abundance pattern suggests that the RP is associated to the ejecta from a core-collapse supernova with a progenitor star of 15 solar mass. There is no significant difference of the recombining plasma parameters between the southeast region and the northwest region surrounded by dense molecular clouds. We also find a hint of Fe I K alpha line at 6.4 keV (~2.4 sigma detection) from the southeast region of the SNR.
We report on CO and HI studies of the mixed-morphology supernova remnant (SNR) G346.6$-$0.2. We find a wind-blown bubble along the radio continuum shell with an expansion velocity of $sim10$ km s$^{-1}$, which was likely formed by strong stellar winds from the high-mass progenitor of the SNR. The radial velocities of the CO/HI bubbles at $V_mathrm{LSR} = -82$-$-59$ km s$^{-1}$ are also consistent with those of shock-excited 1720 MHz OH masers. The molecular cloud in the northeastern shell shows a high-kinetic temperature of $sim60$ K, suggesting that shock-heating occurred. The HI absorption studies imply that G346.6$-$0.2 is located on the far side of the Galactic center from us, and the kinematic distance of the SNR is derived to be $11.1_{-0.3}^{+0.5}$ kpc. We find that the CO line intensity has no specific correlation with the electron temperature of recombining plasma, implying that the recombining plasma in G346.6$-$0.2 was likely produced by adiabatic cooling. With our estimates of the interstellar proton density 280 cm$^{-3}$ and gamma-ray luminosity $< 5.8 times 10^{34}$ erg s$^{-1}$, the total energy of accelerated cosmic rays $W_{rm p} < 9.3 times 10^{47}$ erg is obtained. A comparison of the age-$W_{rm p}$ relation to other SNRs suggests that most of the accelerated cosmic rays in G346.6$-$0.2 have been escaped from the SNR shell.
Recent discoveries of recombining plasmas (RPs) in supernova remnants (SNRs) have dramatically changed our understanding of SNR evolution. To date, a dozen of RP SNRs have been identified in the Galaxy. Here we present Suzaku deep observations of four SNRs in the Large Magellanic Cloud (LMC), N49, N49B, N23, and DEM L71, for accurate determination of their plasma state. Our uniform analysis reveals that only N49 is in the recombining state among them, which is the first robust discovery of a RP from an extra-galactic SNR. Given that RPs have been identified only in core-collapse SNRs, our result strongly suggests a massive star origin of this SNR. On the other hand, no clear evidence for a RP is confirmed in N23, from which detection of recombination lines and continua was previously claimed. Comparing the physical properties of the RP SNRs identified so far, we find that all of them are categorized into the mixed-morphology class and interacting with surrounding molecular clouds. This might be a key to solve formation mechanisms of the RPs.
We present the first dedicated X-ray study of the supernova remnant (SNR) G32.8-0.1 (Kes 78) with Suzaku. X-ray emission from the whole SNR shell has been detected for the first time. The X-ray morphology is well correlated with the emission from the radio shell, while anti-correlated with the molecular cloud found in the SNR field. The X-ray spectrum shows not only conventional low-temperature (kT ~ 0.6 keV) thermal emission in a non-equilibrium ionization state, but also a very high temperature (kT ~ 3.4 keV) component with a very low ionization timescale (~ 2.7e9 cm^{-3}s), or a hard non-thermal component with a photon index Gamma~2.3. The average density of the low-temperature plasma is rather low, of the order of 10^{-3}--10^{-2} cm^{-3}, implying that this SNR is expanding into a low-density cavity. We discuss the X-ray emission of the SNR, also detected in TeV with H.E.S.S., together with multi-wavelength studies of the remnant and other gamma-ray emitting SNRs, such as W28 and RCW 86. Analysis of a time-variable source, 2XMM J185114.3-000004, found in the northern part of the SNR, is also reported for the first time. Rapid time variability and a heavily absorbed hard X-ray spectrum suggest that this source could be a new supergiant fast X-ray transient.
The physical origin of the overionized recombining plasmas (RPs) in supernova remnants (SNRs) has been attracting attention because its understanding provides new insight into SNR evolution. However, the process of the overionization, although it has been discussed in some RP-SNRs, is not yet fully understood. Here we report on spatially resolved spectroscopy of X-ray emission from IC~443 with {it XMM-Newton}. We find that RPs in regions interacting with dense molecular clouds tend to have lower electron temperature and lower recombination timescale. These tendencies indicate that RPs in these regions are cooler and more strongly overionized, which is naturally interpreted as a result of rapid cooling by the molecular clouds via thermal conduction. Our result on IC~443 is similar to that on W44 showing evidence for thermal conduction as the origin of RPs at least in older remnants. We suggest that evaporation of clumpy gas embedded in a hot plasma rapidly cools the plasma as was also found in the W44 case. We also discuss if ionization by protons accelerated in IC~443 is responsible for RPs. Based on the energetics of particle acceleration, we conclude that the proton bombardment is unlikely to explain the observed properties of RPs.