Do you want to publish a course? Click here

Small glitches and other rotational irregularities of the Vela pulsar

119   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Glitches are sudden increases in the rotation rate $ u$ of neutron stars, which are thought to be driven by the neutron superfluid inside the star. The Vela pulsar presents a comparatively high rate of glitches, with 21 events reported since observations began in 1968. These are amongst the largest known glitches (17 of them have sizes $Delta u/ ugeq10^{-6}$) and exhibit very similar characteristics. This similarity, combined with the regularity with which large glitches occur, has turned Vela into an archetype of this type of glitching behaviour. The properties of its smallest glitches, on the other hand, are not clearly established. High-cadence observations of the Vela pulsar were taken between 1981 and 2005 at the Mount Pleasant Radio Observatory. An automated systematic search was carried out that investigated whether a significant change of spin frequency $ u$ and/or the spin-down rate $dot{ u}$ takes place at any given time. We find two new glitches, with respective sizes $Delta u/ u$ of $(5.55pm0.03)times10^{-9}$ and $(38pm4)times10^{-9}$. In addition to these two glitch events, our study reveals numerous events of all possible signatures (i.e. combinations of $Delta u$ and $Deltadot{ u}$ signs), all of them small with $|Delta u|/ u<10^{-9}$, which contribute to the Vela timing noise. The Vela pulsar presents an under-abundance of small glitches compared to many other glitching pulsars, which appears genuine and not a result of observational biases. In addition to typical glitches, the smooth spin-down of the pulsar is also affected by an almost continuous activity that can be partially characterised by small step-like changes in $ u$, $dot{ u,}$ or both. Simulations indicate that a continuous wandering of the rotational phase, following a red spectrum, could mimic such step-like changes in the timing residuals.



rate research

Read More

Pulsars show two classes of rotational irregularities that can be used to understand neutron-star interiors and magnetospheres: glitches and timing noise. Here we present an analysis of the Vela pulsar spanning nearly 21 yr of observation and including 8 glitches. We identify the relative pulse number of all of the observations between glitches, with the only pulse-number ambiguities existing over glitch events. We use the phase coherence of the timing solution to simultaneously model the timing noise and glitches in a Bayesian framework, allowing us to select preferred models for both. We find the glitches can be described using only permanent and transient changes in spin frequency, i.e., no step changes in frequency derivative. For all of the glitches, we only need two exponentially decaying changes in spin frequency to model the transient components. In contrast to previous studies, we find that the dominant transient components decay on a common $approx$ 1300 d time scale, and that a larger fraction ( $gtrsim 25%$) of glitch amplitudes are associated with these transient components. We also detect shorter-duration transient components of $approx$ 25 d, as previously observed, but are limited in sensitivity to events with shorter durations by the cadence of our observations. The timing noise is well described by a steep power-law process that is independent of the glitches and subdominant to the glitch recovery. The braking index is constrained to be $<$ 8 with 95% confidence. This methodology can be used to robustly measure the properties of glitches and timing noise in other pulsars.
We report on a timing programme of 74 young pulsars that have been observed by the Parkes 64-m radio telescope over the past decade. Using modern Bayesian timing techniques, we have measured the properties of 124 glitches in 52 of these pulsars, of which 74 are new. We demonstrate that the glitch sample is complete to fractional increases in spin-frequency greater than $Delta u^{90%}_{g}/ u approx 9.3 times 10^{-9}$. We measure values of the braking index, $n$, in 33 pulsars. In most of these pulsars, their rotational evolution is dominated by episodes of spin-down with $n > 10$, punctuated by step changes in the spin-down rate at the time of a large glitch. The step changes are such that, averaged over the glitches, the long-term $n$ is small. We find a near one-to-one relationship between the inter-glitch value of $n$ and the change in spin-down of the previous glitch divided by the inter-glitch time interval. We discuss the results in the context of a range of physical models.
We present a timing and glitch analysis of the young X-ray pulsar PSR J0537$-$6910, located within the Large Magellanic Cloud, using 13 years of data from the now decommissioned Rossi X-ray Timing Explorer. Rotating with a spin period of 16 ms, PSR J0537$-$6910 is the fastest spinning and most energetic young pulsar known. It also displays the highest glitch activity of any known pulsar. We have found 42 glitches over the data span, corresponding to a glitch rate of 3.2 yr$^{-1}$, with an overall glitch activity rate of $8.8times 10^{-7},$yr$^{-1}$. The high glitch frequency has allowed us to study the glitch behavior in ways that are inaccessible in other pulsars. We observe a strong linear correlation between spin frequency glitch magnitude and wait time to the following glitch. We also find that the post-glitch spin-down recovery is well described by a single two-component model fit to all glitches for which we have adequate input data. This consists of an exponential amplitude $A = (7.6 pm 1.0)times 10^{-14},$s$^{-2}$ and decay timescale $tau = 27_{-6}^{+7},$d, and linear slope $m = (4.1pm 0.4)times 10^{-16},$s$^{-2},$d$^{-1}$. The latter slope corresponds to a second frequency derivative $ddot{ u} = (4.7pm 0.5) times 10^{-22},$s$^{-3}$, from which we find an implied braking index $n=7.4 pm 0.8$. We also present a maximum-likelihood technique for searching for periods in event-time data, which we used to both confirm previously published values and determine rotation frequencies in later observations. We discuss the implied constraints on glitch models from the observed behavior of this system, which we argue cannot be fully explained in the context of existing theories.
We have studied the fascinating dynamics of the nearby Vela pulsars nebula in a campaign comprising eleven 40ks observations with Chandra X-ray Observatory (CXO). The deepest yet images revealed the shape, structure, and motion of the 2-arcminute-long pulsar jet. We find that the jets shape and dynamics are remarkably consistent with that of a steadily turning helix projected on the sky. We discuss possible implications of our results, including free precession of the neutron star and MHD instability scenarios.
Giant pulsar frequency glitches as detected in the emblematic Vela pulsar have long been thought to be the manifestation of a neutron superfluid permeating the inner crust of a neutron star. However, this superfluid has been recently found to be entrained by the crust, and as a consequence it does not carry enough angular momentum to explain giant glitches. The extent to which pulsar-timing observations can be reconciled with the standard vortex-mediated glitch theory is studied considering the current uncertainties on dense-matter properties. To this end, the crustal moment of inertia of glitching pulsars is calculated employing a series of different unified dense-matter equations of state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا