RapidBrachyMCTPS 2.0: A Comprehensive and Flexible Monte Carlo-Based Treatment Planning System for Brachytherapy Applications


Abstract in English

We have previously described RapidBrachyMCTPS, a brachytherapy treatment planning toolkit consisting of a graphical user interface (GUI) and a Geant4-based Monte Carlo (MC) dose calculation engine. This work describes the tools that have recently been added to RapidBrachyMCTPS, such that it now serves as the first stand-alone application for MC-based brachytherapy treatment planning. Notable changes include updated applicator import and positioning, three-plane contouring tools, and updated dose optimization algorithms that, in addition to optimizing dwell position and dwell time, also optimize the rotating shield angles in intensity modulated brachytherapy. The main modules of RapidBrachyMCTPS were validated including DICOM import, applicator import and positioning, contouring, material assignment, source specification, catheter reconstruction, EGSphant generation, interface with the MC code, and dose optimization and analysis tools. Two patient cases were simulated to demonstrate these principles, illustrating the control and flexibility offered by RapidBrachyMCTPS for all steps of the treatment planning pathway. RapidBrachyMCTPS is now a stand-alone application for brachytherapy treatment planning, and offers a user-friendly interface to access powerful MC calculations. It can be used to validate dose distributions from clinical treatment planning systems or model-based dose calculation algorithms, and is also well suited to testing novel combinations of radiation sources and applicators, especially those shielded with high-Z materials.

Download