Do you want to publish a course? Click here

Point-Set Anchors for Object Detection, Instance Segmentation and Pose Estimation

223   0   0.0 ( 0 )
 Added by Fangyun Wei
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A recent approach for object detection and human pose estimation is to regress bounding boxes or human keypoints from a central point on the object or person. While this center-point regression is simple and efficient, we argue that the image features extracted at a central point contain limited information for predicting distant keypoints or bounding box boundaries, due to object deformation and scale/orientation variation. To facilitate inference, we propose to instead perform regression from a set of points placed at more advantageous positions. This point set is arranged to reflect a good initialization for the given task, such as modes in the training data for pose estimation, which lie closer to the ground truth than the central point and provide more informative features for regression. As the utility of a point set depends on how well its scale, aspect ratio and rotation matches the target, we adopt the anchor box technique of sampling these transformations to generate additional point-set candidates. We apply this proposed framework, called Point-Set Anchors, to object detection, instance segmentation, and human pose estimation. Our results show that this general-purpose approach can achieve performance competitive with state-of-the-art methods for each of these tasks. Code is available at url{https://github.com/FangyunWei/PointSetAnchor}



rate research

Read More

We propose a single-shot method for simultaneous 3D object segmentation and 6-DOF pose estimation in pure 3D point clouds scenes based on a consensus that emph{one point only belongs to one object}, i.e., each point has the potential power to predict the 6-DOF pose of its corresponding object. Unlike the recently proposed methods of the similar task, which rely on 2D detectors to predict the projection of 3D corners of the 3D bounding boxes and the 6-DOF pose must be estimated by a PnP like spatial transformation method, ours is concise enough not to require additional spatial transformation between different dimensions. Due to the lack of training data for many objects, the recently proposed 2D detection methods try to generate training data by using rendering engine and achieve good results. However, rendering in 3D space along with 6-DOF is relatively difficult. Therefore, we propose an augmented reality technology to generate the training data in semi-virtual reality 3D space. The key component of our method is a multi-task CNN architecture that can simultaneously predicts the 3D object segmentation and 6-DOF pose estimation in pure 3D point clouds. For experimental evaluation, we generate expanded training data for two state-of-the-arts 3D object datasets cite{PLCHF}cite{TLINEMOD} by using Augmented Reality technology (AR). We evaluate our proposed method on the two datasets. The results show that our method can be well generalized into multiple scenarios and provide performance comparable to or better than the state-of-the-arts.
Although deep convolutional neural networks(CNNs) have achieved remarkable results on object detection and segmentation, pre- and post-processing steps such as region proposals and non-maximum suppression(NMS), have been required. These steps result in high computational complexity and sensitivity to hyperparameters, e.g. thresholds for NMS. In this work, we propose a novel end-to-end trainable deep neural network architecture, which consists of convolutional and recurrent layers, that generates the correct number of object instances and their bounding boxes (or segmentation masks) given an image, using only a single network evaluation without any pre- or post-processing steps. We have tested on detecting digits in multi-digit images synthesized using MNIST, automatically segmenting digits in these images, and detecting cars in the KITTI benchmark dataset. The proposed approach outperforms a strong CNN baseline on the synthesized digits datasets and shows promising results on KITTI car detection.
This manuscript introduces the problem of prominent object detection and recognition inspired by the fact that human seems to priorities perception of scene elements. The problem deals with finding the most important region of interest, segmenting the relevant item/object in that area, and assigning it an object class label. In other words, we are solving the three problems of saliency modeling, saliency detection, and object recognition under one umbrella. The motivation behind such a problem formulation is (1) the benefits to the knowledge representation-based vision pipelines, and (2) the potential improvements in emulating bio-inspired vision systems by solving these three problems together. We are foreseeing extending this problem formulation to fully semantically segmented scenes with instance object priority for high-level inferences in various applications including assistive vision. Along with a new problem definition, we also propose a method to achieve such a task. The proposed model predicts the most important area in the image, segments the associated objects, and labels them. The proposed problem and method are evaluated against human fixations, annotated segmentation masks, and object class categories. We define a chance level for each of the evaluation criterion to compare the proposed algorithm with. Despite the good performance of the proposed baseline, the overall evaluations indicate that the problem of prominent object detection and recognition is a challenging task that is still worth investigating further.
Vanilla models for object detection and instance segmentation suffer from the heavy bias toward detecting frequent objects in the long-tailed setting. Existing methods address this issue mostly during training, e.g., by re-sampling or re-weighting. In this paper, we investigate a largely overlooked approach -- post-processing calibration of confidence scores. We propose NorCal, Normalized Calibration for long-tailed object detection and instance segmentation, a simple and straightforward recipe that reweighs the predicted scores of each class by its training sample size. We show that separately handling the background class and normalizing the scores over classes for each proposal are keys to achieving superior performance. On the LVIS dataset, NorCal can effectively improve nearly all the baseline models not only on rare classes but also on common and frequent classes. Finally, we conduct extensive analysis and ablation studies to offer insights into various modeling choices and mechanisms of our approach.
We propose a novel, conceptually simple and general framework for instance segmentation on 3D point clouds. Our method, called 3D-BoNet, follows the simple design philosophy of per-point multilayer perceptrons (MLPs). The framework directly regresses 3D bounding boxes for all instances in a point cloud, while simultaneously predicting a point-level mask for each instance. It consists of a backbone network followed by two parallel network branches for 1) bounding box regression and 2) point mask prediction. 3D-BoNet is single-stage, anchor-free and end-to-end trainable. Moreover, it is remarkably computationally efficient as, unlike existing approaches, it does not require any post-processing steps such as non-maximum suppression, feature sampling, clustering or voting. Extensive experiments show that our approach surpasses existing work on both ScanNet and S3DIS datasets while being approximately 10x more computationally efficient. Comprehensive ablation studies demonstrate the effectiveness of our design.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا