Self-dual modules in characteristic two and normal subgroups


Abstract in English

We prove Clifford theoretic results on the representations of finite groups which only hold in characteristic $2$. Let $G$ be a finite group, let $N$ be a normal subgroup of $G$ and let $varphi$ be an irreducible $2$-Brauer character of $N$ which is self-dual. We prove that there is a unique self-dual irreducible Brauer character $theta$ of $G$ such that $varphi$ occurs with odd multiplicity in the restriction of $theta$ to $N$. Moreover this multiplicity is $1$. Conversely if $theta$ is an irreducible $2$-Brauer character of $G$ which is self-dual but not of quadratic type, the restriction of $theta$ to $N$ is a sum of distinct self-dual irreducible Brauer character of $N$, none of which have quadratic type. Let $b$ be a real $2$-block of $N$. We show that there is a unique real $2$-block of $G$ covering $b$ which is weakly regular.

Download