Do you want to publish a course? Click here

Reliable Probability Forecast of Solar Flares: Deep Flare Net-Reliable (DeFN-R)

145   0   0.0 ( 0 )
 Added by Naoto Nishizuka
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We developed a reliable probabilistic solar flare forecasting model using a deep neural network, named Deep Flare Net-Reliable (DeFN-R). The model can predict the maximum classes of flares that occur in the following 24 h after observing images, along with the event occurrence probability. We detected active regions from 3x10^5 solar images taken during 2010-2015 by Solar Dynamic Observatory and extracted 79 features for each region, which we annotated with flare occurrence labels of X-, M-, and C-classes. The extracted features are the same as used by Nishizuka et al. (2018); for example, line-of-sight/vector magnetograms in the photosphere, brightening in the corona, and the X-ray emissivity 1 and 2 h before an image. We adopted a chronological split of the database into two for training and testing in an operational setting: the dataset in 2010-2014 for training and the one in 2015 for testing. DeFN-R is composed of multilayer perceptrons formed by batch normalizations and skip connections. By tuning optimization methods, DeFN-R was trained to optimize the Brier skill score (BSS). As a result, we achieved BSS = 0.41 for >=C-class flare predictions and 0.30 for >=M-class flare predictions by improving the reliability diagram while keeping the relative operating characteristic curve almost the same. Note that DeFN is optimized for deterministic prediction, which is determined with a normalized threshold of 50%. On the other hand, DeFN-R is optimized for a probability forecast based on the observation event rate, whose probability threshold can be selected according to users purposes.



rate research

Read More

We developed a solar flare prediction model using a deep neural network (DNN), named Deep Flare Net (DeFN). The model can calculate the probability of flares occurring in the following 24 h in each active region, which is used to determine the most likely maximum classes of flares via a binary classification (e.g., >=M class versus <M class or >=C class versus <C class). From 3x10^5 observation images taken during 2010-2015 by Solar Dynamic Observatory, we automatically detected sunspots and calculated 79 features for each region, to which flare occurrence labels of X-, M-, and C-class were attached. We adopted the features used in Nishizuka et al. (2017) and added some features for operational prediction: coronal hot brightening at 131 A (T>=10^7 K) and the X-ray and 131 A intensity data 1 and 2 h before an image. For operational evaluation, we divided the database into two for training and testing: the dataset in 2010-2014 for training and the one in 2015 for testing. The DeFN model consists of deep multilayer neural networks, formed by adapting skip connections and batch normalizations. To statistically predict flares, the DeFN model was trained to optimize the skill score, i.e., the true skill statistic (TSS). As a result, we succeeded in predicting flares with TSS=0.80 for >=M-class flares and TSS=0.63 for >=C-class flares. Note that in usual DNN models, the prediction process is a black box. However, in the DeFN model, the features are manually selected, and it is possible to analyze which features are effective for prediction after evaluation.
A workshop was recently held at Nagoya University (31 October - 02 November 2017), sponsored by the Center for International Collaborative Research, at the Institute for Space-Earth Environmental Research, Nagoya University, Japan, to quantitatively compare the performance of todays operational solar flare forecasting facilities. Building upon Paper I of this series (Barnes et al. 2016), in Paper II (Leka et al. 2019) we described the participating methods for this latest comparison effort, the evaluation methodology, and presented quantitative comparisons. In this paper we focus on the behavior and performance of the methods when evaluated in the context of broad implementation differences. Acknowledging the short testing interval available and the small number of methods available, we do find that forecast performance: 1) appears to improve by including persistence or prior flare activity, region evolution, and a human forecaster in the loop; 2) is hurt by restricting data to disk-center observations; 3) may benefit from long-term statistics, but mostly when then combined with modern data sources and statistical approaches. These trends are arguably weak and must be viewed with numerous caveats, as discussed both here and in Paper II. Following this present work, we present in Paper IV a novel analysis method to evaluate temporal patterns of forecasting errors of both types (i.e., misses and false alarms; Park et al. 2019). Hence, most importantly, with this series of papers we demonstrate the techniques for facilitating comparisons in the interest of establishing performance-positive methodologies.
Solar flares originate from magnetically active regions but not all solar active regions give rise to a flare. Therefore, the challenge of solar flare prediction benefits by an intelligent computational analysis of physics-based properties extracted from active region observables, most commonly line-of-sight or vector magnetograms of the active-region photosphere. For the purpose of flare forecasting, this study utilizes an unprecedented 171 flare-predictive active region properties, mainly inferred by the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory (SDO/HMI) in the course of the European Union Horizon 2020 FLARECAST project. Using two different supervised machine learning methods that allow feature ranking as a function of predictive capability, we show that: i) an objective training and testing process is paramount for the performance of every supervised machine learning method; ii) most properties include overlapping information and are therefore highly redundant for flare prediction; iii) solar flare prediction is still - and will likely remain - a predominantly probabilistic challenge.
In this study we determine scaling relationships of observed solar flares that can be used to predict upper limits of the GOES-class magnitude of solar flares. The flare prediction scheme is based on the scaling of the slowly-varying potential energy $E_p(t)$, which is extrapolated in time over an interval of $Delta t le$ 24 hrs. The observed scaling of the dissipated energy $E_{diss}$ scales with the potential field energy as $E_{diss} propto E_p^{1.32}$. In addition, the observed scaling relationship of the flare volume, $V propto E_{diss}^{1.17}$, the multi-thermal energy, $E_{th} propto V^{0.76}$, the flare emission measure $EM propto E_{th}^{0.79}$, the EM-weighted temperature $T_{w}$, and the GOES flux, $F_8(t) propto E_p(t)^{0.92}$, allows us then to predict an upper limit of the GOES-class flare magnitude in the extrapolated time window. We find a good correlation (CCC$approx 0.7$) between the observed and predicted GOES-class flare magnitudes (in 172 X and M-class events). This is the first algorithm that employs observed scaling laws of physical flare parameters to predict GOES flux upper limits, an important capability that complements previous flare prediction methods based on machine-learning algorithms used in space weather forecasting.
Solar flares are extremely energetic phenomena in our Solar System. Their impulsive, often drastic radiative increases, in particular at short wavelengths, bring immediate impacts that motivate solar physics and space weather research to understand solar flares to the point of being able to forecast them. As data and algorithms improve dramatically, questions must be asked concerning how well the forecasting performs; crucially, we must ask how to rigorously measure performance in order to critically gauge any improvements. Building upon earlier-developed methodology (Barnes et al, 2016, Paper I), international representatives of regional warning centers and research facilities assembled in 2017 at the Institute for Space-Earth Environmental Research, Nagoya University, Japan to - for the first time - directly compare the performance of operational solar flare forecasting methods. Multiple quantitative evaluation metrics are employed, with focus and discussion on evaluation methodologies given the restrictions of operational forecasting. Numerous methods performed consistently above the no skill level, although which method scored top marks is decisively a function of flare event definition and the metric used; there was no single winner. Following in this paper series we ask why the performances differ by examining implementation details (Leka et al. 2019, Paper III), and then we present a novel analysis method to evaluate temporal patterns of forecasting errors in (Park et al. 2019, Paper IV). With these works, this team presents a well-defined and robust methodology for evaluating solar flare forecasting methods in both research and operational frameworks, and todays performance benchmarks against which improvements and new methods may be compared.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا