Do you want to publish a course? Click here

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

128   0   0.0 ( 0 )
 Added by Meng Qu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper studies few-shot relation extraction, which aims at predicting the relation for a pair of entities in a sentence by training with a few labeled examples in each relation. To more effectively generalize to new relations, in this paper we study the relationships between different relations and propose to leverage a global relation graph. We propose a novel Bayesian meta-learning approach to effectively learn the posterior distribution of the prototype vectors of relations, where the initial prior of the prototype vectors is parameterized with a graph neural network on the global relation graph. Moreover, to effectively optimize the posterior distribution of the prototype vectors, we propose to use the stochastic gradient Langevin dynamics, which is related to the MAML algorithm but is able to handle the uncertainty of the prototype vectors. The whole framework can be effectively and efficiently optimized in an end-to-end fashion. Experiments on two benchmark datasets prove the effectiveness of our proposed approach against competitive baselines in both the few-shot and zero-shot settings.



rate research

Read More

Relation extraction aims to extract relational facts from sentences. Previous models mainly rely on manually labeled datasets, seed instances or human-crafted patterns, and distant supervision. However, the human annotation is expensive, while human-crafted patterns suffer from semantic drift and distant supervision samples are usually noisy. Domain adaptation methods enable leveraging labeled data from a different but related domain. However, different domains usually have various textual relation descriptions and different label space (the source label space is usually a superset of the target label space). To solve these problems, we propose a novel model of relation-gated adversarial learning for relation extraction, which extends the adversarial based domain adaptation. Experimental results have shown that the proposed approach outperforms previous domain adaptation methods regarding partial domain adaptation and can improve the accuracy of distance supervised relation extraction through fine-tuning.
Few-shot relation extraction (FSRE) is of great importance in long-tail distribution problem, especially in special domain with low-resource data. Most existing FSRE algorithms fail to accurately classify the relations merely based on the information of the sentences together with the recognized entity pairs, due to limited samples and lack of knowledge. To address this problem, in this paper, we proposed a novel entity CONCEPT-enhanced FEw-shot Relation Extraction scheme (ConceptFERE), which introduces the inherent concepts of entities to provide clues for relation prediction and boost the relations classification performance. Firstly, a concept-sentence attention module is developed to select the most appropriate concept from multiple concepts of each entity by calculating the semantic similarity between sentences and concepts. Secondly, a self-attention based fusion module is presented to bridge the gap of concept embedding and sentence embedding from different semantic spaces. Extensive experiments on the FSRE benchmark dataset FewRel have demonstrated the effectiveness and the superiority of the proposed ConceptFERE scheme as compared to the state-of-the-art baselines. Code is available at https://github.com/LittleGuoKe/ConceptFERE.
We study few-shot acoustic event detection (AED) in this paper. Few-shot learning enables detection of new events with very limited labeled data. Compared to other research areas like computer vision, few-shot learning for audio recognition has been under-studied. We formulate few-shot AED problem and explore different ways of utilizing traditional supervised methods for this setting as well as a variety of meta-learning approaches, which are conventionally used to solve few-shot classification problem. Compared to supervised baselines, meta-learning models achieve superior performance, thus showing its effectiveness on generalization to new audio events. Our analysis including impact of initialization and domain discrepancy further validate the advantage of meta-learning approaches in few-shot AED.
128 - Jiale Han , Bo Cheng , Wei Lu 2021
Few-shot relation extraction (FSRE) focuses on recognizing novel relations by learning with merely a handful of annotated instances. Meta-learning has been widely adopted for such a task, which trains on randomly generated few-shot tasks to learn generic data representations. Despite impressive results achieved, existing models still perform suboptimally when handling hard FSRE tasks, where the relations are fine-grained and similar to each other. We argue this is largely because existing models do not distinguish hard tasks from easy ones in the learning process. In this paper, we introduce a novel approach based on contrastive learning that learns better representations by exploiting relation label information. We further design a method that allows the model to adaptively learn how to focus on hard tasks. Experiments on two standard datasets demonstrate the effectiveness of our method.
Link prediction is an important way to complete knowledge graphs (KGs), while embedding-based methods, effective for link prediction in KGs, perform poorly on relations that only have a few associative triples. In this work, we propose a Meta Relational Learning (MetaR) framework to do the common but challenging few-shot link prediction in KGs, namely predicting new triples about a relation by only observing a few associative triples. We solve few-shot link prediction by focusing on transferring relation-specific meta information to make model learn the most important knowledge and learn faster, corresponding to relation meta and gradient meta respectively in MetaR. Empirically, our model achieves state-of-the-art results on few-shot link prediction KG benchmarks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا