No Arabic abstract
Censored survival data are common in clinical trial studies. We propose a unified framework for sensitivity analysis to censoring at random in survival data using multiple imputation and martingale, called SMIM. The proposed framework adopts the delta-adjusted and control-based models, indexed by the sensitivity parameter, entailing censoring at random and a wide collection of censoring not at random assumptions. Also, it targets for a broad class of treatment effect estimands defined as functionals of treatment-specific survival functions, taking into account of missing data due to censoring. Multiple imputation facilitates the use of simple full-sample estimation; however, the standard Rubins combining rule may overestimate the variance for inference in the sensitivity analysis framework. We decompose the multiple imputation estimator into a martingale series based on the sequential construction of the estimator and propose the wild bootstrap inference by resampling the martingale series. The new bootstrap inference has a theoretical guarantee for consistency and is computationally efficient compared to the non-parametric bootstrap counterpart. We evaluate the finite-sample performance of the proposed SMIM through simulation and an application on a HIV clinical trial.
Inverse probability of treatment weighting (IPTW) is a popular propensity score (PS)-based approach to estimate causal effects in observational studies at risk of confounding bias. A major issue when estimating the PS is the presence of partially observed covariates. Multiple imputation (MI) is a natural approach to handle missing data on covariates, but its use in the PS context raises three important questions: (i) should we apply Rubins rules to the IPTW treatment effect estimates or to the PS estimates themselves? (ii) does the outcome have to be included in the imputation model? (iii) how should we estimate the variance of the IPTW estimator after MI? We performed a simulation study focusing on the effect of a binary treatment on a binary outcome with three confounders (two of them partially observed). We used MI with chained equations to create complete datasets and compared three ways of combining the results: combining treatment effect estimates (MIte); combining the PS across the imputed datasets (MIps); or combining the PS parameters and estimating the PS of the average covariates across the imputed datasets (MIpar). We also compared the performance of these methods to complete case (CC) analysis and the missingness pattern (MP) approach, a method which uses a different PS model for each pattern of missingness. We also studied empirically the consistency of these 3 MI estimators. Under a missing at random (MAR) mechanism, CC and MP analyses were biased in most cases when estimating the marginal treatment effect, whereas MI approaches had good performance in reducing bias as long as the outcome was included in the imputation model. However, only MIte was unbiased in all the studied scenarios and Rubins rules provided good variance estimates for MIte.
Multiple imputation has become one of the most popular approaches for handling missing data in statistical analyses. Part of this success is due to Rubins simple combination rules. These give frequentist valid inferences when the imputation and analysis procedures are so called congenial and the complete data analysis is valid, but otherwise may not. Roughly speaking, congeniality corresponds to whether the imputation and analysis models make different assumptions about the data. In practice imputation and analysis procedures are often not congenial, such that tests may not have the correct size and confidence interval coverage deviates from the advertised level. We examine a number of recent proposals which combine bootstrapping with multiple imputation, and determine which are valid under uncongeniality and model misspecification. Imputation followed by bootstrapping generally does not result in valid variance estimates under uncongeniality or misspecification, whereas bootstrapping followed by imputation does. We recommend a particular computationally efficient variant of bootstrapping followed by imputation.
There has been increasing interest in modeling survival data using deep learning methods in medical research. In this paper, we proposed a Bayesian hierarchical deep neural networks model for modeling and prediction of survival data. Compared with previously studied methods, the new proposal can provide not only point estimate of survival probability but also quantification of the corresponding uncertainty, which can be of crucial importance in predictive modeling and subsequent decision making. The favorable statistical properties of point and uncertainty estimates were demonstrated by simulation studies and real data analysis. The Python code implementing the proposed approach was provided.
In this paper, we consider a novel framework of positive-unlabeled data in which as positive data survival times are observed for subjects who have events during the observation time as positive data and as unlabeled data censoring times are observed but whether the event occurs or not are unknown for some subjects. We consider two cases: (1) when censoring time is observed in positive data, and (2) when it is not observed. For both cases, we developed parametric models, nonparametric models, and machine learning models and the estimation strategies for these models. Simulation studies show that under this data setup, traditional survival analysis may yield severely biased results, while the proposed estimation method can provide valid results.
Missing covariate data commonly occur in epidemiological and clinical research, and are often dealt with using multiple imputation (MI). Imputation of partially observed covariates is complicated if the substantive model is non-linear (e.g. Cox proportional hazards model), or contains non-linear (e.g. squared) or interaction terms, and standard software implementations of MI may impute covariates from models that are incompatible with such substantive models. We show how imputation by fully conditional specification, a popular approach for performing MI, can be modified so that covariates are imputed from models which are compatible with the substantive model. We investigate through simulation the performance of this proposal, and compare it to existing approaches. Simulation results suggest our proposal gives consistent estimates for a range of common substantive models, including models which contain non-linear covariate effects or interactions, provided data are missing at random and the assumed imputation models are correctly specified and mutually compatible.