Do you want to publish a course? Click here

An Integer Approximation Method for Discrete Sinusoidal Transforms

75   0   0.0 ( 0 )
 Added by Renato J Cintra
 Publication date 2020
and research's language is English
 Authors R. J. Cintra




Ask ChatGPT about the research

Approximate methods have been considered as a means to the evaluation of discrete transforms. In this work, we propose and analyze a class of integer transforms for the discrete Fourier, Hartley, and cosine transforms (DFT, DHT, and DCT), based on simple dyadic rational approximation methods. The introduced method is general, applicable to several block-lengths, whereas existing approaches are usually dedicated to specific transform sizes. The suggested approximate transforms enjoy low multiplicative complexity and the orthogonality property is achievable via matrix polar decomposition. We show that the obtained transforms are competitive with archived methods in literature. New 8-point square wave approximate transforms for the DFT, DHT, and DCT are also introduced as particular cases of the introduced methodology.



rate research

Read More

Discrete transforms play an important role in many signal processing applications, and low-complexity alternatives for classical transforms became popular in recent years. Particularly, the discrete cosine transform (DCT) has proven to be convenient for data compression, being employed in well-known image and video coding standards such as JPEG, H.264, and the recent high efficiency video coding (HEVC). In this paper, we introduce a new class of low-complexity 8-point DCT approximations based on a series of works published by Bouguezel, Ahmed and Swamy. Also, a multiparametric fast algorithm that encompasses both known and novel transforms is derived. We select the best-performing DCT approximations after solving a multicriteria optimization problem, and submit them to a scaling method for obtaining larger size transforms. We assess these DCT approximations in both JPEG-like image compression and video coding experiments. We show that the optimal DCT approximations present compelling results in terms of coding efficiency and image quality metrics, and require only few addition or bit-shifting operations, being suitable for low-complexity and low-power systems.
Sparse coding refers to the pursuit of the sparsest representation of a signal in a typically overcomplete dictionary. From a Bayesian perspective, sparse coding provides a Maximum a Posteriori (MAP) estimate of the unknown vector under a sparse prior. In this work, we suggest enhancing the performance of sparse coding algorithms by a deliberate and controlled contamination of the input with random noise, a phenomenon known as stochastic resonance. The proposed method adds controlled noise to the input and estimates a sparse representation from the perturbed signal. A set of such solutions is then obtained by projecting the original input signal onto the recovered set of supports. We present two variants of the described method, which differ in their final step. The first is a provably convergent approximation to the Minimum Mean Square Error (MMSE) estimator, relying on the generative model and applying a weighted average over the recovered solutions. The second is a relaxed variant of the former that simply applies an empirical mean. We show that both methods provide a computationally efficient approximation to the MMSE estimator, which is typically intractable to compute. We demonstrate our findings empirically and provide a theoretical analysis of our method under several different cases.
We show that discrete singular Radon transforms along a certain class of polynomial mappings $P:mathbb{Z}^dto mathbb{Z}^n$ satisfy sparse bounds. For $n=d=1$ we can handle all polynomials. In higher dimensions, we pose restrictions on the admissible polynomial mappings stemming from a combination of interacting geometric, analytic and number-theoretic obstacles.
We present different computational approaches for the rapid extraction of the signal parameters of discretely sampled damped sinusoidal signals. We compare time- and frequency-domain-based computational approaches in terms of their accuracy and precision and computational time required in estimating the frequencies of such signals, and observe a general trade-off between precision and speed. Our motivation is precise and rapid analysis of damped sinusoidal signals as these become relevant in view of the recent experimental developments in cavity-enhanced polarimetry and ellipsometry, where the relevant time scales and frequencies are typically within the $sim1-10,mu$s and $sim1-100$MHz ranges, respectively. In such experimental efforts, single-shot analysis with high accuracy and precision becomes important when developing experiments that study dynamical effects and/or when developing portable instrumentations. Our results suggest that online, running-fashion, microsecond-resolved analysis of polarimetric/ellipsometric measurements with fractional uncertainties at the $10^{-6}$ levels, is possible, and using a proof-of-principle experimental demonstration we show that using a frequency-based analysis approach we can monitor and analyze signals at kHz rates and accurately detect signal changes at microsecond time-scales.
A classical computer does not allow to calculate a discrete cosine transform on N points in less than linear time. This trivial lower bound is no longer valid for a computer that takes advantage of quantum mechanical superposition, entanglement, and interference principles. In fact, we show that it is possible to realize the discrete cosine transforms and the discrete sine transforms of size NxN and types I,II,III, and IV with as little as O(log^2 N) operations on a quantum computer, whereas the known fast algorithms on a classical computer need O(N log N) operations.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا