Do you want to publish a course? Click here

The flux-weighted gravity-luminosity relation of Galactic classical Cepheids

302   0   0.0 ( 0 )
 Added by Martin Groenewegen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The flux-weighted gravity-luminosity relation (FWGLR) is investigated for a sample of 477 classical Cepheids (CCs), including stars that have been classified in the literature as such but are probably not. The luminosities are taken from the literature, based on the fitting of the spectral energy distributions (SEDs) assuming a certain distance and reddening. The flux-weighted gravity (FWG) is taken from gravity and effective temperature determinations in the literature based on high-resolution spectroscopy. There is a very good agreement between the theoretically predicted and observed FWG versus pulsation period relation that could serve in estimating the FWG (and $log g$) in spectroscopic studies with a precision of 0.1~dex. As was known in the literature, the theoretically predicted FWGLR relation for CCs is very tight and is not very sensitive to metallicity (at least for LMC and solar values), rotation rate, and crossing of the instability strip. The observed relation has a slightly different slope and shows more scatter (0.54~dex). This is due both to uncertainties in the distances and to the pulsation phase averaged FWG values. Data from future Gaia data releases should reduce these errors, and then the FWGLR could serve as a powerful tool in Cepheid studies.



rate research

Read More

Classical Cepheids (DCEPs) are the most important primary indicators for the extragalactic distance scale. Establishing the dependence on metallicity of their period--luminosity and period--Wesenheit (PL/PW) relations has deep consequences on the estimate of the Hubble constant (H$_0$). We aim at investigating the dependence on metal abundance ([Fe/H]) of the PL/PW relations for Galactic DCEPs. We combined proprietary and literature photometric and spectroscopic data, gathering a total sample of 413 Galactic DCEPs (372 fundamental mode -- DCEP_F and 41 first overtone -- DCEP_1O) and constructed new metallicity-dependent PL/PW relations in the near infra-red (NIR) adopting the Astrometric Based Luminosity. We find indications that the slopes of the PL$(K_S)$ and PW$(J,K_S)$ relations for Galactic DCEPs might depend on metallicity when compared to the Large Magellanic Cloud relationships. Therefore, we have used a generalized form of the PL/PW relations to simultaneously take into account the metallicity dependence of the slope and intercept of these relations. We calculated PL/PW relations which, for the first time, explicitly include a metallicity dependence of both the slope and intercept terms. Although the insufficient quality of the available data makes our results not yet conclusive, they are relevant from a methodological point of view. The new relations are linked to the geometric measurement of the distance to the Large Magellanic Cloud and allowed us to estimate a {it Gaia} DR2 parallax zero point offset $Delta varpi$=0.0615$pm$0.004 mas from the dataset of DCEPs used in this work.
133 - K. Genovali , G. Bono (1 2013
We present homogeneous and accurate iron abundances for almost four dozen (47) of Galactic Cepheids using high-spectral resolution (R$sim$40,000) high signal-to-noise ratio (S/N $ge$ 100) optical spectra collected with UVES at VLT. A significant fraction of the sample (32) is located in the inner disk (RG $le$ 6.9 kpc) and for half of them we provide new iron abundances. Current findings indicate a steady increase in iron abundance when approaching the innermost regions of the thin disk. The metallicity is super-solar and ranges from 0.2 dex for RG $sim$ 6.5 kpc to 0.4 dex for RG $sim$ 5.5 kpc. Moreover, we do not find evidence of correlation between iron abundance and distance from the Galactic plane. We collected similar data available in the literature and ended up with a sample of 420 Cepheids. Current data suggest that the mean metallicity and the metallicity dispersion in the four quadrants of the Galactic disk attain similar values. The first-second quadrants show a more extended metal-poor tail, while the third-fourth quadrants show a more extended metal-rich tail, but the bulk of the sample is at solar iron abundance. Finally, we found a significant difference between the iron abundance of Cepheids located close to the edge of the inner disk ([Fe/H]$sim$0.4) and young stars located either along the Galactic bar or in the nuclear bulge ([Fe/H]$sim$0). Thus suggesting that the above regions have had different chemical enrichment histories. The same outcome applies to the metallicity gradient of the Galactic bulge, since mounting empirical evidence indicates that the mean metallicity increases when moving from the outer to the inner bulge regions.
We present a new extended and detailed set of models for Classical Cepheid pulsators at solar chemical composition ($Z=0.02$, $Y=0.28$) based on a well tested nonlinear hydrodynamical approach. In order to model the possible dependence on crucial assumptions such as the Mass-Luminosity relation of central Helium burning intermediate-mass stars or the efficiency of superadiabatic convection, the model set was computed by varying not only the pulsation mode and the stellar mass but also the Mass-Luminosity relation and the mixing length parameter that is used to close the system of nonlinear hydrodynamical and convective equations. The dependence of the predicted boundaries of the instability strip as well as of both light and radial velocity curves on the assumed Mass-Luminosity and the efficiency of superadiabatic convection is discussed. Nonlinear Period-Mass-Luminosity-Temperature, Period-Radius and Period-Mass-Radius relations are also computed. The theoretical atlas of bolometric light curves for both the fundamental and first overtone mode has been converted in the Gaia filters $G$, $G_{BP}$ and $G_{BR}$ and the corresponding mean magnitudes have been derived. Finally the first theoretical Period-Luminosity-Color and Period-Wesenheit relations in the Gaia filters are provided and the resulting theoretical parallaxes are compared with Gaia Data Release 2 results for both fundamental and first overtone Galactic Cepheids.
In this work, we updated the catalog of Galactic Cepheids with $24mumathrm{m}$ photometry by cross-matching the positions of known Galactic Cepheids to the recently released MIPSGAL point source catalog. We have added 36 new sources featuring MIPSGAL photometry in our analysis, thus increasing the existing sample to 65. Six different sources of compiled Cepheid distances were used to establish a $24mumathrm{m}$ period-luminosity (P-L) relation. Our recommended $24mumathrm{m}$ P-L relation is $M_{24mumathrm{m}}=-3.18(pm0.10)log P - 2.46(pm0.10)$, with an estimated intrinsic dispersion of 0.20 mag, and is derived from 58 Cepheids exhibiting distances based on a calibrated Wesenheit function. The slopes of the P-L relations were steepest when tied solely to the 10 Cepheids exhibiting trigonometric parallaxes from the Hubble Space Telescope and Hipparcos. Statistical tests suggest that these P-L relations are significantly different from those associated with other methods of distance determination, and simulations indicate that difference may arise from the small sample size.
High quality spectra of 90 blue supergiant stars in the Large Magellanic Cloud are analyzed with respect to effective temperature, gravity, metallicity, reddening, extinction and extinction law. An average metallicity, based on Fe and Mg abundances, relative to the Sun of [Z] = -0.35 +/- 0.09 dex is obtained. The reddening distribution peaks at E(B-V) = 0.08 mag, but significantly larger values are also encountered. A wide distribution of the ratio of extinction to reddening is found ranging from Rv = 2 to 6. The results are used to investigate the blue supergiant relationship between flux-weighted gravity, and absolute bolometric magnitude. The existence of a tight relationship, the FGLR, is confirmed. However, in contrast to previous work the observations reveal that the FGLR is divided into two parts with a different slope. For flux-weighted gravities larger than 1.30 dex the slope is similar as found in previous work, but the relationship becomes significantly steeper for smaller values of the flux-weighted gravity. A new calibration of the FGLR for extragalactic distance determinations is provided.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا