Do you want to publish a course? Click here

NGC 474 as viewed with KCWI: diagnosing a shell galaxy

114   0   0.0 ( 0 )
 Added by Adebusola Alabi
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present new spectra obtained using Keck/KCWI and perform kinematics and stellar population analyses of the shell galaxy NGC 474, from both the galaxy centre and a region from the outer shell. We show that both regions have similarly extended star formation histories although with different stellar population properties. The central region of NGC 474 is dominated by intermediate-aged stars (8.3 pm 0.3 Gyr) with subsolar metallicity ([Z/H]= -0.24 pm 0.07 dex) while the observed shell region, which hosts a substantial population of younger stars, has a mean luminosity-weighted age of 4.0 pm 0.5 Gyr with solar metallicities ([Z/H]=-0.03 pm 0.09 dex). Our results are consistent with a scenario in which NGC 474 experienced a major to intermediate merger with a log((M_*/M_odot)sim10 ) mass satellite galaxy at least sim 2 Gyr ago which produced its shell system. This work shows that the direct spectroscopic study of low-surface brightness stellar features, such as shells, is now feasible and opens up a new window to understanding galaxy formation and evolution.



rate research

Read More

Globular clusters (GCs) are some of the most visible tracers of the merging and accretion history of galaxy halos. Metal-poor GCs, in particular, are thought to arrive in massive galaxies largely through dry, minor merging events, but it is rare to see a direct connection between GCs and visible stellar streams. NGC 474 is a post-merger early-type galaxy with dramatic fine structures made of concentric shells and radial streams that have been more clearly revealed by deep imaging. We present a study of GCs in NGC 474 to better establish the relationship between merger-induced fine structure and the GC system. We find that many GCs are superimposed on visible streams and shells, and about 35% of GCs outside $3R_{rm e,galaxy}$ are located in regions of fine structure. The spatial correlation between the GCs and fine structure is significant at the 99.9% level, showing that this correlation is not coincidental. The colors of the GCs on the fine structures are mostly blue, and we also find an intermediate-color population that is dominant in the central region, and which will likely passively evolve to have colors consistent with a traditional metal-rich GC population. The association of the blue GCs with fine structures is direct confirmation that many metal-poor GCs are accreted onto massive galaxy halos through merging events, and that progenitors of these mergers are sub-L* galaxies.
We present extensive optical photometric and spectroscopic observations of the high-velocity (HV) Type Ia supernova (SN Ia) 2017fgc, covering the phase from $sim$ 12 d before to $sim 389$ d after maximum brightness. SN 2017fgc is similar to normal SNe Ia, with an absolute peak magnitude of $M_{rm max}^{B} approx$ $-19.32 pm 0.13$ mag and a post-peak decline of ${Delta}m_{15}(B)$ = $1.05 pm 0.07$ mag. Its peak bolometric luminosity is derived as $1.32 pm 0.13) times 10^{43} $erg s$^{-1}$, corresponding to a $^{56}$Ni mass of $0.51 pm 0.03 M_{odot}$. The light curves of SN 2017fgc are found to exhibit excess emission in the $UBV$ bands in the early nebular phase and pronounced secondary shoulder/maximum features in the $RrIi$ bands. Its spectral evolution is similar to that of HV SNe Ia, with a maximum-light Si II velocity of $15,000 pm 150 $km s$^{-1}$ and a post-peak velocity gradient of $sim$ $120 pm 10 $km s$^{-1} $d$^{-1}$. The Fe II and Mg II lines blended near 4300 {AA} and the Fe II, Si II, and Fe III lines blended near 4800 {AA} are obviously stronger than those of normal SNe Ia. Inspecting a large sample reveals that the strength of the two blends in the spectra, and the secondary peak in the $i/r$-band light curves, are found to be positively correlated with the maximum-light Si II velocity. Such correlations indicate that HV SNe~Ia may experience more complete burning in the ejecta and/or that their progenitors have higher metallicity. Examining the birthplace environment of SN 2017fgc suggests that it likely arose from a stellar environment with young and high-metallicity populations.
Groups are the most common association of galaxies in the Universe, found in different configuration states such as loose, compact and fossil groups. We have studied the galaxy group MKW 4s, dominated by the giant early-type galaxy NGC 4104 at z=0.0282. Our aim was to understand the evolutionary stage of this group and to place it within the framework of the standard LambdaCDM cosmological scenario. We have obtained deep optical data with CFHT/Megacam (g and r bands) and we have applied both the galfit 2D image fitting program and the IRAF/ellipse 1D radial method to model the brightest group galaxy (BGG) and its extended stellar envelope. We have also analysed publicly available XMM-Newton and Chandra X-ray data. From N-body simulations of dry-mergers with different mass ratios of the infalling galaxy, we could constrain the dynamical stage of this system. Our results show a stellar shell system feature in NGC 4104 and an extended envelope that was reproduced by our numerical simulations of a collision with a satellite galaxy about 4--6 Gyr ago. The initial pair of galaxies had a mass ratio of at least 1:3. Taking into account the stellar envelope contribution to the total r band magnitude and the X-ray luminosity, MKW 4s falls into the category of a fossil group. Our results show that we are witnessing a rare case of a shell elliptical galaxy in a forming fossil group.
We describe observations of the apparently empty ring galaxy ESO 474-G040 obtained with the Southern African Large Telescope (SALT). The observations, consisting of imaging, long-slit spectroscopy and Fabry-Perot mapping of the H-alpha line, allow determining the ring kinematics as well as estimating the metallicity of the ring and the stellar population composition in its various parts. We propose that the object could best be understood as being the result of a past merger of disk galaxies, which formed a gas ring that subsequently disrupted via the bead instability and is presently forming stars.
We used Planck data to study the M33 galaxy and find a substantial temperature asymmetry with respect to its minor axis projected onto the sky plane. This temperature asymmetry correlates well with the HI velocity field at 21 cm, at least within a galactocentric distance of 0.5 degree, and it is found to extend up to about 3 degrees from the galaxy center. We conclude that the revealed effect, that is, the temperature asymmetry and its extension, implies that we detected the differential rotation of the M33 galaxy and of its extended baryonic halo.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا