No Arabic abstract
We report experimental and computational observations of dynamic contact networks for colloidal suspensions undergoing shear thickening. The dense suspensions are comprised of sterically stabilized poly(methyl methacrylate) hard sphere colloids that are spherically symmetric and have varied surface roughness. Confocal rheometry and dissipative particle dynamics simulations show that the shear thickening strength scales exponentially with the scaled deficit contact number and the scaled jamming distance. Rough colloids, which experience additional tangential and rolling constraints, require an average of 1.5 - 2 fewer particle contacts as compared to smooth colloids, in order to generate the same shear thickening strength. This is because the surface roughness enhances geometric friction in a way that the rough colloids do not experience a large change in the free volume near the jamming point. In contrast, smooth colloids must undergo significant reduction in the free volume to support an equivalent shear stress. The available free volume for different colloid roughness is related to the deficiency from the maximum number of nearest neighbors at jamming under shear. Our results further suggest that the force per contact is different for particles with different morphologies.
We report direct measurements of spatially resolved surface stresses over the entire surface of a dense suspension during discontinuous shear thickening (DST) using Boundary Stress Microscopy (BSM) in a parallel-plate rheometer. We find that large fluctuations in the bulk rheological response at the onset of DST are the result of localized transitions to a state with very high stress, consistent with a fully jammed solid that makes direct contact with the shearing boundaries. That jammed solid like phase (SLP) is rapidly fractured, producing two separate SLPs that propagate in opposite directions. By comparing the speed of propagation of the SLPs with the motion of the confining plates, we deduce that one remains in contact with the bottom boundary, and another remains in contact with the top. These regions grow, bifurcate, and eventually interact and decay in a complex manner that depends on the measurement conditions (constant shear rate vs constant stress). In constant applied stress mode, BSM directly reveals dramatic stress fluctuations that are completely missed in standard bulk rheology.
We investigate shear thickening and jamming within the framework of a family of spatially homogeneous, scalar rheological models. These are based on the `soft glassy rheology model of Sollich et al. [Phys. Rev. Lett. 78, 2020 (1997)], but with an effective temperature x that is a decreasing function of either the global stress sigma or the local strain l. For appropiate x=x(sigma), it is shown that the flow curves include a region of negative slope, around which the stress exhibits hysteresis under a cyclically varying imposed strain rate gd. A subclass of these x(sigma) have flow curves that touch the gd=0 axis for a finite range of stresses; imposing a stress from this range {em jams} the system, in the sense that the strain gamma creeps only logarithmically with time t, gamma(t)simln t. These same systems may produce a finite asymptotic yield stress under an imposed strain, in a manner that depends on the entire stress history of the sample, a phenomenon we refer to as history--dependent jamming. In contrast, when x=x(l) the flow curves are always monotonic, but we show that some x(l) generate an oscillatory strain response for a range of steady imposed stresses. Similar spontaneous oscillations are observed in a simplified model with fewer degrees of freedom. We discuss this result in relation to the temporal instabilities observed in rheological experiments and stick--slip behaviour found in other contexts, and comment on the possible relationship with `delay differential equations that are known to produce oscillations and chaos.
Particle-based simulations of discontinuous shear thickening (DST) and shear jamming (SJ) suspensions are used to study the role of stress-activated constraints, with an emphasis on resistance to gear-like rolling. Rolling friction decreases the volume fraction required for DST and SJ, in quantitative agreement with real-life suspensions with adhesive surface chemistries and rough particle shapes. It sets a distinct structure of the frictional force network compared to only sliding friction, and from a dynamical perspective leads to an increase in the velocity correlation length, in part responsible for the increased viscosity. The physics of rolling friction is thus a key element in achieving a comprehensive understanding of strongly shear-thickening materials.
Shear thickening is a widespread phenomenon in suspension flow that, despite sustained study, is still the subject of much debate. The longstanding view that shear thickening is due to hydrodynamic clusters has been challenged by recent theory and simulations suggesting that contact forces dominate, not only in discontinuous, but also in continuous shear thickening. Here, we settle this dispute using shear reversal experiments on micron-sized silica and latex colloidal particles to measure directly the hydrodynamic and contact force contributions to shear thickening. We find that contact forces dominate even continuous shear thickening. Computer simulations show that these forces most likely arise from frictional interactions.
We study the rheology of cornstarch suspensions, a non-Brownian particle system that exhibits discontinuous shear thickening. Using magnetic resonance imaging (MRI), the local properties of the flow are obtained by the determination of local velocity profiles and concentrations in a Couette cell. For low rotational rates, we observe shear localization characteristic of yield stress fluids. When the overall shear rate is increased, the width of the sheared region increases. The discontinuous shear thickening is found to set in at the end of this shear localization regime when all of the fluid is sheared: the existence of a nonflowing region, thus, seems to prevent or delay shear thickening. Macroscopic observations using different measurement geometries show that the smaller the gap of the shear cell, the lower the shear rate at which shear thickening sets in. We, thus, propose that the discontinuous shear thickening of cornstarch suspensions is a consequence of dilatancy: the system under flow attempts to dilate but instead undergoes a jamming transition, because it is confined. This proposition is confirmed by an independent measurement of the dilation of the suspension as a function of the shear rate. It is also explains the MRI observations: when flow is localized, the nonflowing region plays the role of a dilatancy reservoir which allows the material to be sheared without jamming.