CPA-Lasing in Thin-Elastic Plates via Exceptional Points


Abstract in English

We present here how a coherent perfect absorber-laser (CPAL) enabled by parity-time ($mathcal{PT}$)-symmetry breaking may be exploited to build monochromatic amplifying devices for flexural waves. The fourth order partial differential equation governing the propagation of flexural waves leads to four by four transfer matrices, and this results in physical properties of the $mathcal{PT}$-symmetry specific to elastic plate systems. We thus demonstrate the possibility of using CPAL for such systems and we argue the possibility of using this concept to detect extremely small-scale vibration perturbations with important outcomes in surface science (imaging of nanometer vibration) and geophysics (improving seismic sensors like velocimeters). The device can also generate finite signals using very low exciting intensities. The system can alternatively be used as a perfect absorber for flexural energy by tailoring the left and right incident wave for energy harvesting applications.

Download