Do you want to publish a course? Click here

HDR-GAN: HDR Image Reconstruction from Multi-Exposed LDR Images with Large Motions

187   0   0.0 ( 0 )
 Added by Wenxi Liu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Synthesizing high dynamic range (HDR) images from multiple low-dynamic range (LDR) exposures in dynamic scenes is challenging. There are two major problems caused by the large motions of foreground objects. One is the severe misalignment among the LDR images. The other is the missing content due to the over-/under-saturated regions caused by the moving objects, which may not be easily compensated for by the multiple LDR exposures. Thus, it requires the HDR generation model to be able to properly fuse the LDR images and restore the missing details without introducing artifacts. To address these two problems, we propose in this paper a novel GAN-based model, HDR-GAN, for synthesizing HDR images from multi-exposed LDR images. To our best knowledge, this work is the first GAN-based approach for fusing multi-exposed LDR images for HDR reconstruction. By incorporating adversarial learning, our method is able to produce faithful information in the regions with missing content. In addition, we also propose a novel generator network, with a reference-based residual merging block for aligning large object motions in the feature domain, and a deep HDR supervision scheme for eliminating artifacts of the reconstructed HDR images. Experimental results demonstrate that our model achieves state-of-the-art reconstruction performance over the prior HDR methods on diverse scenes.



rate research

Read More

Most consumer-grade digital cameras can only capture a limited range of luminance in real-world scenes due to sensor constraints. Besides, noise and quantization errors are often introduced in the imaging process. In order to obtain high dynamic range (HDR) images with excellent visual quality, the most common solution is to combine multiple images with different exposures. However, it is not always feasible to obtain multiple images of the same scene and most HDR reconstruction methods ignore the noise and quantization loss. In this work, we propose a novel learning-based approach using a spatially dynamic encoder-decoder network, HDRUNet, to learn an end-to-end mapping for single image HDR reconstruction with denoising and dequantization. The network consists of a UNet-style base network to make full use of the hierarchical multi-scale information, a condition network to perform pattern-specific modulation and a weighting network for selectively retaining information. Moreover, we propose a Tanh_L1 loss function to balance the impact of over-exposed values and well-exposed values on the network learning. Our method achieves the state-of-the-art performance in quantitative comparisons and visual quality. The proposed HDRUNet model won the second place in the single frame track of NITRE2021 High Dynamic Range Challenge.
Recovering a high dynamic range (HDR) image from a single low dynamic range (LDR) input image is challenging due to missing details in under-/over-exposed regions caused by quantization and saturation of camera sensors. In contrast to existing learning-based methods, our core idea is to incorporate the domain knowledge of the LDR image formation pipeline into our model. We model the HDRto-LDR image formation pipeline as the (1) dynamic range clipping, (2) non-linear mapping from a camera response function, and (3) quantization. We then propose to learn three specialized CNNs to reverse these steps. By decomposing the problem into specific sub-tasks, we impose effective physical constraints to facilitate the training of individual sub-networks. Finally, we jointly fine-tune the entire model end-to-end to reduce error accumulation. With extensive quantitative and qualitative experiments on diverse image datasets, we demonstrate that the proposed method performs favorably against state-of-the-art single-image HDR reconstruction algorithms.
It is very challenging to reconstruct a high dynamic range (HDR) from a low dynamic range (LDR) image as an ill-posed problem. This paper proposes a luminance attentive network named LANet for HDR reconstruction from a single LDR image. Our method is based on two fundamental observations: (1) HDR images stored in relative luminance are scale-invariant, which means the HDR images will hold the same information when multiplied by any positive real number. Based on this observation, we propose a novel normalization method called HDR calibration for HDR images stored in relative luminance, calibrating HDR images into a similar luminance scale according to the LDR images. (2) The main difference between HDR images and LDR images is in under-/over-exposed areas, especially those highlighted. Following this observation, we propose a luminance attention module with a two-stream structure for LANet to pay more attention to the under-/over-exposed areas. In addition, we propose an extended network called panoLANet for HDR panorama reconstruction from an LDR panorama and build a dualnet structure for panoLANet to solve the distortion problem caused by the equirectangular panorama. Extensive experiments show that our proposed approach LANet can reconstruct visually convincing HDR images and demonstrate its superiority over state-of-the-art approaches in terms of all metrics in inverse tone mapping. The image-based lighting application with our proposed panoLANet also demonstrates that our method can simulate natural scene lighting using only LDR panorama. Our source code is available at https://github.com/LWT3437/LANet.
In the recent years, there has been a significant improvement in the quality of samples produced by (deep) generative models such as variational auto-encoders and generative adversarial networks. However, the representation capabilities of these methods still do not capture the full distribution for complex classes of images, such as human faces. This deficiency has been clearly observed in previous works that use pre-trained generative models to solve imaging inverse problems. In this paper, we suggest to mitigate the limited representation capabilities of generators by making them image-adaptive and enforcing compliance of the restoration with the observations via back-projections. We empirically demonstrate the advantages of our proposed approach for image super-resolution and compressed sensing.
We seek to reconstruct sharp and noise-free high-dynamic range (HDR) video from a dual-exposure sensor that records different low-dynamic range (LDR) information in different pixel columns: Odd columns provide low-exposure, sharp, but noisy information; even columns complement this with less noisy, high-exposure, but motion-blurred data. Previous LDR work learns to deblur and denoise (DISTORTED->CLEAN) supervised by pairs of CLEAN and DISTORTED images. Regrettably, capturing DISTORTED sensor readings is time-consuming; as well, there is a lack of CLEAN HDR videos. We suggest a method to overcome those two limitations. First, we learn a different function instead: CLEAN->DISTORTED, which generates samples containing correlated pixel noise, and row and column noise, as well as motion blur from a low number of CLEAN sensor readings. Second, as there is not enough CLEAN HDR video available, we devise a method to learn from LDR video in-stead. Our approach compares favorably to several strong baselines, and can boost existing methods when they are re-trained on our data. Combined with spatial and temporal super-resolution, it enables applications such as re-lighting with low noise or blur.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا