Do you want to publish a course? Click here

Scaling Graph Neural Networks with Approximate PageRank

190   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Graph neural networks (GNNs) have emerged as a powerful approach for solving many network mining tasks. However, learning on large graphs remains a challenge - many recently proposed scalable GNN approaches rely on an expensive message-passing procedure to propagate information through the graph. We present the PPRGo model which utilizes an efficient approximation of information diffusion in GNNs resulting in significant speed gains while maintaining state-of-the-art prediction performance. In addition to being faster, PPRGo is inherently scalable, and can be trivially parallelized for large datasets like those found in industry settings. We demonstrate that PPRGo outperforms baselines in both distributed and single-machine training environments on a number of commonly used academic graphs. To better analyze the scalability of large-scale graph learning methods, we introduce a novel benchmark graph with 12.4 million nodes, 173 million edges, and 2.8 million node features. We show that training PPRGo from scratch and predicting labels for all nodes in this graph takes under 2 minutes on a single machine, far outpacing other baselines on the same graph. We discuss the practical application of PPRGo to solve large-scale node classification problems at Google.

rate research

Read More

Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks such as node classification and link prediction. However, important unsupervised problems on graphs, such as graph clustering, have proved more resistant to advances in GNNs. In this paper, we study unsupervised training of GNN pooling in terms of their clustering capabilities. We start by drawing a connection between graph clustering and graph pooling: intuitively, a good graph clustering is what one would expect from a GNN pooling layer. Counterintuitively, we show that this is not true for state-of-the-art pooling methods, such as MinCut pooling. To address these deficiencies, we introduce Deep Modularity Networks (DMoN), an unsupervised pooling method inspired by the modularity measure of clustering quality, and show how it tackles recovery of the challenging clustering structure of real-world graphs. In order to clarify the regimes where existing methods fail, we carefully design a set of experiments on synthetic data which show that DMoN is able to jointly leverage the signal from the graph structure and node attributes. Similarly, on real-world data, we show that DMoN produces high quality clusters which correlate strongly with ground truth labels, achieving state-of-the-art results.
Graph neural networks (GNNs) have been demonstrated to be powerful in modeling graph-structured data. However, training GNNs usually requires abundant task-specific labeled data, which is often arduously expensive to obtain. One effective way to reduce the labeling effort is to pre-train an expressive GNN model on unlabeled data with self-supervision and then transfer the learned model to downstream tasks with only a few labels. In this paper, we present the GPT-GNN framework to initialize GNNs by generative pre-training. GPT-GNN introduces a self-supervised attributed graph generation task to pre-train a GNN so that it can capture the structural and semantic properties of the graph. We factorize the likelihood of the graph generation into two components: 1) Attribute Generation and 2) Edge Generation. By modeling both components, GPT-GNN captures the inherent dependency between node attributes and graph structure during the generative process. Comprehensive experiments on the billion-scale Open Academic Graph and Amazon recommendation data demonstrate that GPT-GNN significantly outperforms state-of-the-art GNN models without pre-training by up to 9.1% across various downstream tasks.
Graph neural networks (GNNs) achieve remarkable success in graph-based semi-supervised node classification, leveraging the information from neighboring nodes to improve the representation learning of target node. The success of GNNs at node classification depends on the assumption that connected nodes tend to have the same label. However, such an assumption does not always work, limiting the performance of GNNs at node classification. In this paper, we propose label-consistency based graph neural network(LC-GNN), leveraging node pairs unconnected but with the same labels to enlarge the receptive field of nodes in GNNs. Experiments on benchmark datasets demonstrate the proposed LC-GNN outperforms traditional GNNs in graph-based semi-supervised node classification.We further show the superiority of LC-GNN in sparse scenarios with only a handful of labeled nodes.
Graph neural networks (GNNs) have been widely used in representation learning on graphs and achieved state-of-the-art performance in tasks such as node classification and link prediction. However, most existing GNNs are designed to learn node representations on the fixed and homogeneous graphs. The limitations especially become problematic when learning representations on a misspecified graph or a heterogeneous graph that consists of various types of nodes and edges. In this paper, we propose Graph Transformer Networks (GTNs) that are capable of generating new graph structures, which involve identifying useful connections between unconnected nodes on the original graph, while learning effective node representation on the new graphs in an end-to-end fashion. Graph Transformer layer, a core layer of GTNs, learns a soft selection of edge types and composite relations for generating useful multi-hop connections so-called meta-paths. Our experiments show that GTNs learn new graph structures, based on data and tasks without domain knowledge, and yield powerful node representation via convolution on the new graphs. Without domain-specific graph preprocessing, GTNs achieved the best performance in all three benchmark node classification tasks against the state-of-the-art methods that require pre-defined meta-paths from domain knowledge.
386 - Meiqi Zhu , Xiao Wang , Chuan Shi 2021
Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا