Do you want to publish a course? Click here

Few-Shot Semantic Segmentation Augmented with Image-Level Weak Annotations

259   0   0.0 ( 0 )
 Added by Shuo Lei
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Despite the great progress made by deep neural networks in the semantic segmentation task, traditional neural-networkbased methods typically suffer from a shortage of large amounts of pixel-level annotations. Recent progress in fewshot semantic segmentation tackles the issue by only a few pixel-level annotated examples. However, these few-shot approaches cannot easily be applied to multi-way or weak annotation settings. In this paper, we advance the few-shot segmentation paradigm towards a scenario where image-level annotations are available to help the training process of a few pixel-level annotations. Our key idea is to learn a better prototype representation of the class by fusing the knowledge from the image-level labeled data. Specifically, we propose a new framework, called PAIA, to learn the class prototype representation in a metric space by integrating image-level annotations. Furthermore, by considering the uncertainty of pseudo-masks, a distilled soft masked average pooling strategy is designed to handle distractions in image-level annotations. Extensive empirical results on two datasets show superior performance of PAIA.



rate research

Read More

Despite the great progress made by deep CNNs in image semantic segmentation, they typically require a large number of densely-annotated images for training and are difficult to generalize to unseen object categories. Few-shot segmentation has thus been developed to learn to perform segmentation from only a few annotated examples. In this paper, we tackle the challenging few-shot segmentation problem from a metric learning perspective and present PANet, a novel prototype alignment network to better utilize the information of the support set. Our PANet learns class-specific prototype representations from a few support images within an embedding space and then performs segmentation over the query images through matching each pixel to the learned prototypes. With non-parametric metric learning, PANet offers high-quality prototypes that are representative for each semantic class and meanwhile discriminative for different classes. Moreover, PANet introduces a prototype alignment regularization between support and query. With this, PANet fully exploits knowledge from the support and provides better generalization on few-shot segmentation. Significantly, our model achieves the mIoU score of 48.1% and 55.7% on PASCAL-5i for 1-shot and 5-shot settings respectively, surpassing the state-of-the-art method by 1.8% and 8.6%.
Due to the fact that fully supervised semantic segmentation methods require sufficient fully-labeled data to work well and can not generalize to unseen classes, few-shot segmentation has attracted lots of research attention. Previous arts extract features from support and query images, which are processed jointly before making predictions on query images. The whole process is based on convolutional neural networks (CNN), leading to the problem that only local information is used. In this paper, we propose a TRansformer-based Few-shot Semantic segmentation method (TRFS). Specifically, our model consists of two modules: Global Enhancement Module (GEM) and Local Enhancement Module (LEM). GEM adopts transformer blocks to exploit global information, while LEM utilizes conventional convolutions to exploit local information, across query and support features. Both GEM and LEM are complementary, helping to learn better feature representations for segmenting query images. Extensive experiments on PASCAL-5i and COCO datasets show that our approach achieves new state-of-the-art performance, demonstrating its effectiveness.
Few-shot semantic segmentation models aim to segment images after learning from only a few annotated examples. A key challenge for them is overfitting. Prior works usually limit the overall model capacity to alleviate overfitting, but the limited capacity also hampers the segmentation accuracy. We instead propose a method that increases the overall model capacity by supplementing class-specific features with objectness, which is class-agnostic and so not prone to overfitting. Extensive experiments demonstrate the versatility of our method with multiple backbone models (ResNet-50, ResNet-101 and HRNetV2-W48) and existing base architectures (DENet and PFENet). Given only one annotated example of an unseen category, experiments show that our method outperforms state-of-art methods with respect to mIoU by at least 4.7% and 1.5% on PASCAL-5i and COCO-20i respectively.
Few-shot image classification (FSIC), which requires a model to recognize new categories via learning from few images of these categories, has attracted lots of attention. Recently, meta-learning based methods have been shown as a promising direction for FSIC. Commonly, they train a meta-learner (meta-learning model) to learn easy fine-tuning weight, and when solving an FSIC task, the meta-learner efficiently fine-tunes itself to a task-specific model by updating itself on few images of the task. In this paper, we propose a novel meta-learning based layer-wise adaptive updating (LWAU) method for FSIC. LWAU is inspired by an interesting finding that compared with common deep models, the meta-learner pays much more attention to update its top layer when learning from few images. According to this finding, we assume that the meta-learner may greatly prefer updating its top layer to updating its bottom layers for better FSIC performance. Therefore, in LWAU, the meta-learner is trained to learn not only the easy fine-tuning model but also its favorite layer-wise adaptive updating rule to improve its learning efficiency. Extensive experiments show that with the layer-wise adaptive updating rule, the proposed LWAU: 1) outperforms existing few-shot classification methods with a clear margin; 2) learns from few images more efficiently by at least 5 times than existing meta-learners when solving FSIC.
This paper studies the problem of learning semantic segmentation from image-level supervision only. Current popular solutions leverage object localization maps from classifiers as supervision signals, and struggle to make the localization maps capture more complete object content. Rather than previous efforts that primarily focus on intra-image information, we address the value of cross-image semantic relations for comprehensive object pattern mining. To achieve this, two neural co-attentions are incorporated into the classifier to complimentarily capture cross-image semantic similarities and differences. In particular, given a pair of training images, one co-attention enforces the classifier to recognize the common semantics from co-attentive objects, while the other one, called contrastive co-attention, drives the classifier to identify the unshared semantics from the rest, uncommon objects. This helps the classifier discover more object patterns and better ground semantics in image regions. In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference, hence eventually benefiting semantic segmentation learning. More essentially, our algorithm provides a unified framework that handles well different WSSS settings, i.e., learning WSSS with (1) precise image-level supervision only, (2) extra simple single-label data, and (3) extra noisy web data. It sets new state-of-the-arts on all these settings, demonstrating well its efficacy and generalizability. Moreover, our approach ranked 1st place in the Weakly-Supervised Semantic Segmentation Track of CVPR2020 Learning from Imperfect Data Challenge.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا