Do you want to publish a course? Click here

Increasing Trustworthiness of Deep Neural Networks via Accuracy Monitoring

73   0   0.0 ( 0 )
 Added by Zhihui Shao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Inference accuracy of deep neural networks (DNNs) is a crucial performance metric, but can vary greatly in practice subject to actual test datasets and is typically unknown due to the lack of ground truth labels. This has raised significant concerns with trustworthiness of DNNs, especially in safety-critical applications. In this paper, we address trustworthiness of DNNs by using post-hoc processing to monitor the true inference accuracy on a users dataset. Concretely, we propose a neural network-based accuracy monitor model, which only takes the deployed DNNs softmax probability output as its input and directly predicts if the DNNs prediction result is correct or not, thus leading to an estimate of the true inference accuracy. The accuracy monitor model can be pre-trained on a dataset relevant to the target application of interest, and only needs to actively label a small portion (1% in our experiments) of the users dataset for model transfer. For estimation robustness, we further employ an ensemble of monitor models based on the Monte-Carlo dropout method. We evaluate our approach on different deployed DNN models for image classification and traffic sign detection over multiple datasets (including adversarial samples). The result shows that our accuracy monitor model provides a close-to-true accuracy estimation and outperforms the existing baseline methods.



rate research

Read More

Learning Rate (LR) is an important hyper-parameter to tune for effective training of deep neural networks (DNNs). Even for the baseline of a constant learning rate, it is non-trivial to choose a good constant value for training a DNN. Dynamic learning rates involve multi-step tuning of LR values at various stages of the training process and offer high accuracy and fast convergence. However, they are much harder to tune. In this paper, we present a comprehensive study of 13 learning rate functions and their associated LR policies by examining their range parameters, step parameters, and value update parameters. We propose a set of metrics for evaluating and selecting LR policies, including the classification confidence, variance, cost, and robustness, and implement them in LRBench, an LR benchmarking system. LRBench can assist end-users and DNN developers to select good LR policies and avoid bad LR policies for training their DNNs. We tested LRBench on Caffe, an open source deep learning framework, to showcase the tuning optimization of LR policies. Evaluated through extensive experiments, we attempt to demystify the tuning of LR policies by identifying good LR policies with effective LR value ranges and step sizes for LR update schedules.
The evolution of a deep neural network trained by the gradient descent can be described by its neural tangent kernel (NTK) as introduced in [20], where it was proven that in the infinite width limit the NTK converges to an explicit limiting kernel and it stays constant during training. The NTK was also implicit in some other recent papers [6,13,14]. In the overparametrization regime, a fully-trained deep neural network is indeed equivalent to the kernel regression predictor using the limiting NTK. And the gradient descent achieves zero training loss for a deep overparameterized neural network. However, it was observed in [5] that there is a performance gap between the kernel regression using the limiting NTK and the deep neural networks. This performance gap is likely to originate from the change of the NTK along training due to the finite width effect. The change of the NTK along the training is central to describe the generalization features of deep neural networks. In the current paper, we study the dynamic of the NTK for finite width deep fully-connected neural networks. We derive an infinite hierarchy of ordinary differential equations, the neural tangent hierarchy (NTH) which captures the gradient descent dynamic of the deep neural network. Moreover, under certain conditions on the neural network width and the data set dimension, we prove that the truncated hierarchy of NTH approximates the dynamic of the NTK up to arbitrary precision. This description makes it possible to directly study the change of the NTK for deep neural networks, and sheds light on the observation that deep neural networks outperform kernel regressions using the corresponding limiting NTK.
Deep neural networks are widely used for nonlinear function approximation with applications ranging from computer vision to control. Although these networks involve the composition of simple arithmetic operations, it can be very challenging to verify whether a particular network satisfies certain input-output properties. This article surveys methods that have emerged recently for soundly verifying such properties. These methods borrow insights from reachability analysis, optimization, and search. We discuss fundamental differences and connections between existing algorithms. In addition, we provide pedagogical implementations of existing methods and compare them on a set of benchmark problems.
216 - Ling Liu , Wenqi Wei , Ka-Ho Chow 2019
Ensemble learning is a methodology that integrates multiple DNN learners for improving prediction performance of individual learners. Diversity is greater when the errors of the ensemble prediction is more uniformly distributed. Greater diversity is highly correlated with the increase in ensemble accuracy. Another attractive property of diversity optimized ensemble learning is its robustness against deception: an adversarial perturbation attack can mislead one DNN model to misclassify but may not fool other ensemble DNN members consistently. In this paper we first give an overview of the concept of ensemble diversity and examine the three types of ensemble diversity in the context of DNN classifiers. We then describe a set of ensemble diversity measures, a suite of algorithms for creating diversity ensembles and for performing ensemble consensus (voted or learned) for generating high accuracy ensemble output by strategically combining outputs of individual members. This paper concludes with a discussion on a set of open issues in quantifying ensemble diversity for robust deep learning.
Due to their increasing spread, confidence in neural network predictions became more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over or under confidence. Many researchers have been working on understanding and quantifying uncertainty in a neural networks prediction. As a result, different types and sources of uncertainty have been identified and a variety of approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. A comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and not reducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks, ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for the calibration of neural networks and give an overview of existing baselines and implementations. Different examples from the wide spectrum of challenges in different fields give an idea of the needs and challenges regarding uncertainties in practical applications. Additionally, the practical limitations of current methods for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا